Skip to main content

Nutrition in Neurocognition and Mental Health

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

While it is widely known and accepted that proper nutrition is vital to physical health throughout the lifecycle [1, 2], the relationship between nutrition and neurocognition and mental health has been less acknowledged [3]. This chapter will review and summarize the current literature on the impact of nutrition on neurocognition and mental health. Folate, vitamin B12, vitamin D, choline, iodine, iron, zinc, omega-3 fatty acids, and overall diet quality show the most evidence suggesting potential influences, and will therefore be targeted here. Their effects on neurocognition and mental health throughout the lifespan (prenatal development, childhood, adolescence, and adulthood) will be reviewed. Detailed explanations of the involved biological processes and metabolism of nutrients are beyond the scope of this chapter and interested readers can see [4,5,6,7,8] for further reading. Additional aspects of nutrition including the role of probiotics, hydration, and nutraceuticals (other than l-methyl-folate) are also outside the scope of this chapter [see [9,10,11]] for further reading. Implications of the existing evidence, recommendations for advancing future research, and public health policy matters will also be discussed. Overall, it is hoped that this chapter will enhance understanding and consideration of the potential role of nutritional factors in psychological and neuropsychological evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJP. Mothers, babies, and health in later life. 2nd ed. Edinburgh: Churchill Livingstone; 1998.

    Google Scholar 

  2. Harding JE. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001;30(1):15–23.

    Article  PubMed  Google Scholar 

  3. Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease cause and prevention. Curr Opin Pediatr. 2015;27(2):248–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bani-Fatemi A, Howe AS, De Luca V. Epigenetic studies of suicidal behavior. Neurocase. 2015;21(2):134–43.

    Article  PubMed  Google Scholar 

  5. Bani-Fatemi A, Zai C, De Luca V. Early onset schizophrenia: Gender analysis of genome-wide potential methylation. Clin Chim Acta. 2015;449:63–7.

    Article  PubMed  Google Scholar 

  6. Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9(7):568–78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F. Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis. 2015;73:307–18.

    Article  PubMed  Google Scholar 

  8. Dauncey MJ. Nutrition, the brain and cognitive decline: insights from epigenetics. Eur J Clin Nutr. 2014;68(11):1179–85.

    Article  PubMed  Google Scholar 

  9. Sarris J, Murphy J, Mischoulon D, Papakostas GI, Fava M, Berk M, et al. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am J Psychiatry. 2016;173(6):575–87.

    Article  PubMed  Google Scholar 

  10. Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanza-Martinez V, Freeman MP, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015;2(3):271–4.

    Article  PubMed  Google Scholar 

  11. Forbes SC, Holroyd-Leduc JM, Poulin MJ, Hogan DB. Effect of Nutrients, Dietary Supplements and Vitamins on Cognition: a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can Geriatr J. 2015;18(4):231–45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72(4):267–84.

    Article  PubMed  Google Scholar 

  13. Anjos T, Altmae S, Emmett P, Tiemeier H, Closa-Monasterolo R, Luque V, et al. Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project. Eur J Nutr. 2013;52(8):1825–42.

    Article  PubMed  Google Scholar 

  14. Douglas SSU. Mental and Nervous Disorders Associated with Pellagra. Archives of Internal Medicine, 1915:121.

    Google Scholar 

  15. Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Arch Gen Psychiatry. 1992;49(12):983–8.

    Article  PubMed  Google Scholar 

  16. de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ. Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci U S A. 2010;107(39):16881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stein Z, Susser M, Saenger G, Marolla F. Nutrition and mental performance. Science. 1972;178(4062):708–13.

    Article  PubMed  Google Scholar 

  18. Logan AC, Jacka FN. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol. 2014;33:22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. The world health report. Primary health care now more than ever. Geneva: World Health Organization; 2008.

    Google Scholar 

  20. Mathers CD LD. Updated projections of global mortality and burden of disease, 2002–2030: data sources, methods and results. Geneva; 2005.

    Google Scholar 

  21. Ferri CPPM, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M. Alzheimer’s Disease International Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. WHO AsDIa. Dementia: a public health priority 2012.

    Google Scholar 

  23. Thapar A, Cooper M, Jefferies R, Stergiakouli E. What causes attention deficit hyperactivity disorder? Arch Dis Child. 2012;97(3):260–5.

    Article  PubMed  Google Scholar 

  24. Benton D, a.i.s.b.l IE. Micronutrient status, cognition and behavioral problems in childhood. Eur J Nutr. 2008;47 Suppl 3:38–50.

    Article  PubMed  Google Scholar 

  25. Georgieff MK. The role of iron in neurodevelopment: fetal iron deficiency and the developing hippocampus. Biochem Soc Trans. 2008;36(Pt 6):1267–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Yuan X, Chen L, Wei H, Chen J, Li T. The change in retinoic acid receptor signaling induced by prenatal marginal vitamin A deficiency and its effects on learning and memory. J Nutr Biochem. 2017;47:75–85.

    Article  PubMed  Google Scholar 

  27. Ali H, Hamadani J, Mehra S, Tofail F, Hasan MI, Shaikh S, et al. Effect of maternal antenatal and newborn supplementation with vitamin A on cognitive development of school-aged children in rural Bangladesh: a follow-up of a placebo-controlled, randomized trial. Am J Clin Nutr. 2017;106(1):77–87.

    Article  PubMed  Google Scholar 

  28. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006;5(11):949–60.

    Article  PubMed  Google Scholar 

  29. Health USDoHHSNIo. https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/ on March 5 2018.

  30. Valera-Gran D, Navarrete-Muñoz EM, Garcia de la Hera M, Fernández-Somoano A, Tardón A, Ibarluzea J, et al. Effect of maternal high dosages of folic acid supplements on neurocognitive development in children at 4–5 year of age: the prospective birth cohort Infancia y Medio Ambiente (INMA) study. Am J Clin Nutr. 2017;106(3):878–87.

    Google Scholar 

  31. Steenweg-de Graaff J, Tiemeier H, Steegers-Theunissen RP, Hofman A, Jaddoe VW, Verhulst FC, et al. Maternal dietary patterns during pregnancy and child internalising and externalising problems. The Generation R Study. Clin Nutr. 2014;33(1):115–21

    Article  PubMed  Google Scholar 

  32. Gale CR, Krishnaveni GV, Kehoe SH, Srinivasan K, Fall CH. Association between maternal nutritional status in pregnancy and offspring cognitive function during childhood and adolescence; a systematic review. BMC Pregnancy Childbirth. 2016;16:220.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao Y, Sheng C, Xie RH, Sun W, Asztalos E, Moddemann D, et al. New Perspective on Impact of Folic Acid Supplementation during Pregnancy on Neurodevelopment/Autism in the Offspring Children - A Systematic Review. PLoS ONE. 2016;11(11):e0165626.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roza SJ, van Batenburg-Eddes T, Steegers EA, Jaddoe VW, Mackenbach JP, Hofman A, et al. Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study. Br J Nutr. 2010;103(3):445–52.

    Article  PubMed  Google Scholar 

  35. Steenweg-de Graaff JC, Tiemeier H, Basten MG, Rijlaarsdam J, Demmelmair H, Koletzko B, et al. Maternal LC-PUFA status during pregnancy and child problem behavior: the Generation R Study. Pediatr Res. 2015;77(3):489–97.

    Article  PubMed  Google Scholar 

  36. Steenweg-de Graaff J, Ghassabian A, Jaddoe VW, Tiemeier H, Roza SJ. Folate concentrations during pregnancy and autistic traits in the offspring. The Generation R Study. Eur J Public Health. 2015;25(3):431–3.

    Article  PubMed  Google Scholar 

  37. Mech AW, Farah A. Correlation of clinical response with homocysteine reduction during therapy with reduced B vitamins in patients with MDD who are positive for MTHFR C677T or A1298C polymorphism: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2016;77(5):668–71.

    Article  PubMed  Google Scholar 

  38. Pilsner JR, Hu H, Wright RO, Kordas K, Ettinger AS, Sanchez BN, et al. Maternal MTHFR genotype and haplotype predict deficits in early cognitive development in a lead-exposed birth cohort in Mexico City. Am J Clin Nutr. 2010;92(1):226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Peerbooms OL, van Os J, Drukker M, Kenis G, Hoogveld L, de Hert M, et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain Behav Immun. 2011;25(8):1530–43.

    Article  PubMed  Google Scholar 

  40. Lewis SJ, Lawlor DA, Davey Smith G, Araya R, Timpson N, Day IN, et al. The thermolabile variant of MTHFR is associated with depression in the British Women’s Heart and Health Study and a meta-analysis. Mol Psychiatry. 2006;11(4):352–60.

    Article  PubMed  Google Scholar 

  41. Jha S, Kumar P, Kumar R, Das A. Effectiveness of add-on l-methylfolate therapy in a complex psychiatric illness with MTHFR C677 T genetic polymorphism. Asian J Psychiatr. 2016;22:74–5.

    Article  PubMed  Google Scholar 

  42. Petridou ET, Kousoulis AA, Michelakos T, Papathoma P, Dessypris N, Papadopoulos FC, et al. Folate and B12 serum levels in association with depression in the aged: a systematic review and meta-analysis. Aging Ment Health. 2016;20(9):965–73.

    Article  PubMed  Google Scholar 

  43. Bender A, Hagan KE, Kingston N. The association of folate and depression: A meta-analysis. J Psychiatr Res. 2017;95:9–18.

    Article  PubMed  Google Scholar 

  44. Papakostas GI, Shelton RC, Zajecka JM, Bottiglieri T, Roffman J, Cassiello C, et al. Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: results from a randomized clinical trial. J Clin Psychiatry. 2014;75(8):855–63.

    Article  PubMed  Google Scholar 

  45. Papakostas GI, Shelton RC, Zajecka JM, Etemad B, Rickels K, Clain A, et al. L-methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am J Psychiatry. 2012;169(12):1267–74.

    Article  PubMed  Google Scholar 

  46. Nishio K, Goto Y, Kondo T, Ito S, Ishida Y, Kawai S, et al. Serum folate and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism adjusted for folate intake. J Epidemiol. 2008;18(3):125–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Health USDoHHSNIo https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/ on March 5 2018.

  48. Herbert VDK. Vitamin B12 in modern nutrition in health and disease. 8th ed. Baltimore: Williams and Wilkins; 1994.

    Google Scholar 

  49. Herbert V. Vitamin B12 in present knowledge in nutrition. 17th ed. Washington: International Life Sciences Institute Press; 1996.

    Google Scholar 

  50. Combs G. Vitamin B12 in The vitamins. New York: Academic; 1992.

    Google Scholar 

  51. Zittoun J, Zittoun R. Modern clinical testing strategies in cobalamin and folate deficiency. Semin Hematol. 1999;36(1):35–46.

    PubMed  Google Scholar 

  52. IoMFaN Board. Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington: National Academy; 1998.

    Google Scholar 

  53. Lim SY, Kim EJ, Kim A, Lee HJ, Choi HJ, Yang SJ. Nutritional Factors Affecting Mental Health. Clin Nutr Res. 2016;5(3):143–52.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bhate V, Deshpande S, Bhat D, Joshi N, Ladkat R, Watve S, et al. Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr Bull. 2008;29(4):249–54.

    Article  PubMed  PubMed Central  Google Scholar 

  55. del Rio Garcia C, Torres-Sanchez L, Chen J, Schnaas L, Hernandez C, Osorio E, et al. Maternal MTHFR 677C > T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment. Nutr Neurosci. 2009;12(1):13–20.

    Article  Google Scholar 

  56. Eilander A, Muthayya S, van der Knaap H, Srinivasan K, Thomas T, Kok FJ, et al. Undernutrition, fatty acid and micronutrient status in relation to cognitive performance in Indian school children: a cross-sectional study. Br J Nutr. 2010;103(7):1056–64.

    Article  PubMed  Google Scholar 

  57. Louwman MW, van Dusseldorp M, van de Vijver FJ, Thomas CM, Schneede J, Ueland PM, et al. Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr. 2000;72(3):762–9.

    Article  PubMed  Google Scholar 

  58. Duong MC, Mora-Plazas M, Marín C, Villamor E. Vitamin B-12 deficiency in children is associated with grade repetition and school absenteeism, independent of folate, iron, zinc, or vitamin a status biomarkers. J Nutr. 2015;145(7):1541–8.

    Article  PubMed  Google Scholar 

  59. Kvestad I, Hysing M, Shrestha M, Ulak M, Thorne-Lyman AL, Henjum S, et al. Vitamin B-12 status in infancy is positively associated with development and cognitive functioning 5 y later in Nepalese children. Am J Clin Nutr. 2017;105(5):1122–31.

    Article  PubMed  Google Scholar 

  60. Venkatramanan S, Armata IE, Strupp BJ, Finkelstein JL. Vitamin B-12 and Cognition in Children. Adv Nutr. 2016;7(5):879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kvestad I, Taneja S, Kumar T, Hysing M, Refsum H, Yajnik CS, et al. Vitamin B12 and folic acid improve gross motor and problem-solving skills in young north indian children: a randomized placebo-controlled trial. PLoS ONE. 2015;10(6):e0129915.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moore E, Mander A, Ames D, Carne R, Sanders K, Watters D. Cognitive impairment and vitamin B12: a review. Int Psychogeriatr. 2012;24(4):541–56.

    Article  PubMed  Google Scholar 

  63. Zeisel SH CK. Choline In: Erdman JW MI, Zeisel SH, editors. Present Knowledge in Nutrition, 10th ed. Washington, DC: Wiley-Blackwell; 2012:405–18.

    Google Scholar 

  64. IoMaFaN Board. Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington: National Academy; 1998.

    Google Scholar 

  65. Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Health USDoHHSNIo https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/ on March 5, 2018.

  67. Corbin KD, Zeisel SH. The nutrigenetics and nutrigenomics of the dietary requirement for choline. Prog Mol Biol Transl Sci. 2012;108:159–77.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J. 2018:fj201700692RR.

    Google Scholar 

  69. Boeke CE, Gillman MW, Hughes MD, Rifas-Shiman SL, Villamor E, Oken E. Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol. 2013;177(12):1338–47.

    Article  PubMed  Google Scholar 

  70. Ross RG, Hunter SK, McCarthy L, Beuler J, Hutchison AK, Wagner BD, et al. Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk. Am J Psychiatry. 2013;170(3):290–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Freedman R, Ross RG. Prenatal choline and the development of schizophrenia. Shanghai Arch Psychiatry. 2015;27(2):90–102.

    PubMed  PubMed Central  Google Scholar 

  72. Liu Y, Zhang H, Ju G, Zhang X, Xu Q, Liu S, et al. A study of the PEMT gene in schizophrenia. Neurosci Lett. 2007;424(3):203–6.

    Article  PubMed  Google Scholar 

  73. McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J. 2008;22(4):982–1001.

    Article  PubMed  Google Scholar 

  74. MF H. Vitamin D. modern nutrition in health and disease, 10th ed. Philadelphia Lippincott Williams and Wilkins; 2006.

    Google Scholar 

  75. Norman AW HH. Vitamin D. In: Bowman BA RR, editors. Present knowledge in nutrition, 9th ed. Washington DC: ILSI Press; 2006.

    Google Scholar 

  76. Health USDoHHSNIo https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/ on March 5 2018.

  77. Annweiler C, Maby E, Meyerber M, Beauchet O. Hypovitaminosis D and executive dysfunction in older adults with memory complaint: a memory clinic-based study. Dement Geriatr Cogn Disord. 2014;37(5–6):286–93.

    Article  PubMed  Google Scholar 

  78. Malabanan A, Veronikis IE, Holick MF. Redefining vitamin D insufficiency. Lancet. 1998;351(9105):805–6.

    Article  PubMed  Google Scholar 

  79. McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, et al. Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch Gen Psychiatry. 2010;67(9):889–94.

    Article  PubMed  Google Scholar 

  80. Pet MA, Brouwer-Brolsma EM. The impact of maternal vitamin d status on offspring brain development and function: A systematic review. Adv Nutr. 2016;7(4):665–78.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Veena SR, Krishnaveni GV, Srinivasan K, Thajna KP, Hegde BG, Gale CR, et al. Association between maternal vitamin D status during pregnancy and offspring cognitive function during childhood and adolescence. Asia Pac J Clin Nutr. 2017;26(3):438–49.

    PubMed  PubMed Central  Google Scholar 

  82. Föcker M, Antel J, Ring S, Hahn D, Kanal Ö, Öztürk D, et al. Vitamin D and mental health in children and adolescents. Eur Child Adolesc Psychiatry. 2017;26(9):1043–66.

    Article  PubMed  Google Scholar 

  83. Goodwill AM, Szoeke C. A Systematic Review and Meta-Analysis of The Effect of Low Vitamin D on Cognition. J Am Geriatr Soc. 2017;65(10):2161–8.

    Article  PubMed  Google Scholar 

  84. Anglin RE, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry. 2013;202:100–7.

    Article  PubMed  Google Scholar 

  85. Bičíková M, Dušková M, Vítků J, Kalvachová B, Řípová D, Mohr P, et al. Vitamin D in anxiety and affective disorders. Physiol Res. 2015;64(Suppl 2):S101–3.

    PubMed  Google Scholar 

  86. Imai CM, Halldorsson TI, Eiriksdottir G, Cotch MF, Steingrimsdottir L, Thorsdottir I, et al. Depression and serum 25-hydroxyvitamin D in older adults living at northern latitudes—AGES-Reykjavik Study. J Nutr Sci. 2015;4:e37.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Khoraminya N, Tehrani-Doost M, Jazayeri S, Hosseini A, Djazayery A. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust N Z J Psychiatry. 2013;47(3):271–5.

    Article  PubMed  Google Scholar 

  88. Boerman R, Cohen D, Schulte PF, Nugter A. Prevalence of Vitamin D deficiency in adult outpatients with bipolar disorder or schizophrenia. J Clin Psychopharmacol. 2016;36(6):588–92.

    Article  PubMed  Google Scholar 

  89. Grudet C, Malm J, Westrin A, Brundin L. Suicidal patients are deficient in vitamin D, associated with a pro-inflammatory status in the blood. Psychoneuroendocrinology. 2014;50:210–9.

    Article  PubMed  Google Scholar 

  90. Jääskeläinen T, Knekt P, Suvisaari J, Männistö S, Partonen T, Sääksjärvi K, et al. Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression. Br J Nutr. 2015;113(9):1418–26.

    Article  PubMed  Google Scholar 

  91. Shaffer JA, Edmondson D, Wasson LT, Falzon L, Homma K, Ezeokoli N, et al. Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials. Psychosom Med. 2014;76(3):190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mozaffari-Khosravi H, Nabizade L, Yassini-Ardakani SM, Hadinedoushan H, Barzegar K. The effect of 2 different single injections of high dose of vitamin D on improving the depression in depressed patients with vitamin D deficiency: a randomized clinical trial. J Clin Psychopharmacol. 2013;33(3):378–85.

    Article  PubMed  Google Scholar 

  93. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57(5):467–78.

    Article  PubMed  Google Scholar 

  94. Health USDoHHSNIo https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ on March 5 2018.

  95. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009;12(4):444–54.

    Article  PubMed  Google Scholar 

  96. Lozoff B. Iron deficiency and child development. Food Nutr Bull. 2007;28(4 Suppl):S560–71.

    Article  PubMed  Google Scholar 

  97. Grantham-McGregor S, Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr. 2001;131(2S–2):649S–66S; discussion 66S–68S.

    Article  PubMed  Google Scholar 

  98. Fararouei M, Robertson C, Whittaker J, Sovio U, Ruokonen A, Pouta A, et al. Maternal Hb during pregnancy and offspring’s educational achievement: a prospective cohort study over 30 years. Br J Nutr. 2010;104(9):1363–8.

    Article  PubMed  Google Scholar 

  99. Tran TD, Biggs BA, Tran T, Simpson JA, Hanieh S, Dwyer T, et al. Impact on infants’ cognitive development of antenatal exposure to iron deficiency disorder and common mental disorders. PLoS ONE. 2013;8(9):e74876.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Beard JL. Why iron deficiency is important in infant development. J Nutr. 2008;138(12):2534–6.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51.

    Article  PubMed  Google Scholar 

  102. Agaoglu L, Torun O, Unuvar E, Sefil Y, Demir D. Effects of iron deficiency anemia on cognitive function in children. Arzneimittelforschung. 2007;57(6A):426–30.

    PubMed  Google Scholar 

  103. Falkingham M, Abdelhamid A, Curtis P, Fairweather-Tait S, Dye L, Hooper L. The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis. Nutr J. 2010;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Low M, Farrell A, Biggs BA, Pasricha SR. Effects of daily iron supplementation in primary-school-aged children: systematic review and meta-analysis of randomized controlled trials. CMAJ. 2013;185(17):E791–802.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Greig AJ, Patterson AJ, Collins CE, Chalmers KA. Iron deficiency, cognition, mental health and fatigue in women of childbearing age: a systematic review. J Nutr Sci. 2013;2:e14.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cook RL, O’Dwyer NJ, Parker HM, Donges CE, Cheng HL, Steinbeck KS, et al. Iron deficiency anemia, not iron deficiency, is associated with reduced attention in healthy young women. Nutr. 2017;9(11).

    Article  PubMed Central  Google Scholar 

  107. Li Z, Li B, Song X, Zhang D. Dietary zinc and iron intake and risk of depression: A meta-analysis. Psychiatry Res. 2017;251:41–7.

    Article  PubMed  Google Scholar 

  108. National Research Council CtAtHIoPI. Health implications of perchlorate ingestion Washington. DC: The National Academies; 2005.

    Google Scholar 

  109. JT D. Modern nutrition in health and disease In: Shils ME SM, Ross AC, Caballero B, Cousins RJ, editors. Baltimore: Lippincott, 10th ed. Williams and Wilkins; 2006:300–11.

    Google Scholar 

  110. Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW. Nutrients for cognitive development in school-aged children. Nutr Rev. 2004;62(8):295–306.

    Article  PubMed  Google Scholar 

  111. Zimmermann M, Delange F. Iodine supplementation of pregnant women in Europe: a review and recommendations. Eur J Clin Nutr. 2004;58(7):979–84.

    Article  PubMed  Google Scholar 

  112. Hynes KL, Otahal P, Hay I, Burgess JR. Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort. J Clin Endocrinol Metab. 2013;98(5):1954–62.

    Article  PubMed  Google Scholar 

  113. van Mil NH, Tiemeier H, Bongers-Schokking JJ, Ghassabian A, Hofman A, Hooijkaas H, et al. Low urinary iodine excretion during early pregnancy is associated with alterations in executive functioning in children. J Nutr. 2012;142(12):2167–74.

    Article  PubMed  Google Scholar 

  114. Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the avon longitudinal study of parents and children (ALSPAC). Lancet. 2013;382(9889):331–7.

    Article  PubMed  Google Scholar 

  115. de Escobar GM, Obregón MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr. 2007;10(12A):1554–70.

    Article  PubMed  Google Scholar 

  116. Zhou SJ, Skeaff SA, Ryan P, Doyle LW, Anderson PJ, Kornman L, et al. The effect of iodine supplementation in pregnancy on early childhood neurodevelopment and clinical outcomes: results of an aborted randomised placebo-controlled trial. Trials. 2015;16:563.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Prasad AS. Zinc: an overview. Nutrition. 1995;11(1 Suppl):93–9.

    PubMed  Google Scholar 

  118. Institute of Medicine FaNB. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Washington. DC: National Academy Press; 2001.

    Google Scholar 

  119. Health USDoHHSNIo https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/ on March 5, 2018.

  120. Polanska K, Hanke W, Krol A, Gromadzinska J, Kuras R, Janasik B, et al. Micronutrients during pregnancy and child psychomotor development: Opposite effects of Zinc and Selenium. Environ Res. 2017;158:583–9.

    Article  PubMed  Google Scholar 

  121. Warthon-Medina M, Moran VH, Stammers AL, Dillon S, Qualter P, Nissensohn M, et al. Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis. Eur J Clin Nutr. 2015;69(6):649–61.

    Article  PubMed  Google Scholar 

  122. Nowak G, Siwek M, Dudek D, Zieba A, Pilc A. Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol. 2003;55(6):1143–7.

    PubMed  Google Scholar 

  123. Siwek M, Dudek D, Paul IA, Sowa-Kućma M, Zieba A, Popik P, et al. Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord. 2009;118(1–3):187–95.

    Article  PubMed  Google Scholar 

  124. Ranjbar E, Kasaei MS, Mohammad-Shirazi M, Nasrollahzadeh J, Rashidkhani B, Shams J, et al. Effects of zinc supplementation in patients with major depression: a randomized clinical trial. Iran J Psychiatry. 2013;8(2):73–9.

    PubMed  PubMed Central  Google Scholar 

  125. Swardfager W, Herrmann N, Mazereeuw G, Goldberger K, Harimoto T, Lanctôt KL. Zinc in depression: a meta-analysis. Biol Psychiatry. 2013;74(12):872–8.

    Article  PubMed  Google Scholar 

  126. Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011;22(4):476–85.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Grima NA, Pase MP, Macpherson H, Pipingas A. The effects of multivitamins on cognitive performance: a systematic review and meta-analysis. J Alzheimers Dis. 2012;29(3):561–9.

    Article  PubMed  Google Scholar 

  128. Grodstein F, O’Brien J, Kang JH, Dushkes R, Cook NR, Okereke O, et al. Long-term multivitamin supplementation and cognitive function in men: a randomized trial. Ann Intern Med. 2013;159(12):806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rucklidge JJ, Frampton CM, Gorman B, Boggis A. Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. Br J Psychiatry. 2014;204:306–15.

    Article  PubMed  Google Scholar 

  130. Rucklidge JJ, Frampton CM, Gorman B, Boggis A. Vitamin-Mineral Treatment of ADHD in Adults. J Atten Disord. 2017;21(6):522–32.

    Article  PubMed  Google Scholar 

  131. Health USDoHHSNIo https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/ on March 5 2018.

  132. Luchtman DW, Song C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology. 2013;64:550–65.

    Article  PubMed  Google Scholar 

  133. Hadders-Algra M, Bouwstra H, van Goor SA, Dijck-Brouwer DA, Muskiet FA. Prenatal and early postnatal fatty acid status and neurodevelopmental outcome. J Perinat Med. 2007;35(Suppl 1):S28–34.

    PubMed  Google Scholar 

  134. Campoy C, Escolano-Margarit MV, Ramos R, Parrilla-Roure M, Csabi G, Beyer J, et al. Effects of prenatal fish-oil and 5-methyltetrahydrofolate supplementation on cognitive development of children at 6.5 y of age. Am J Clin Nutr. 2011;94(6 Suppl):1880S–8S.

    Article  PubMed  Google Scholar 

  135. Gould JF, Smithers LG, Makrides M. The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2013;97(3):531–44.

    Article  PubMed  Google Scholar 

  136. Dziechciarz P, Horvath A, Szajewska H. Effects of n-3 long-chain polyunsaturated fatty acid supplementation during pregnancy and/or lactation on neurodevelopment and visual function in children: a systematic review of randomized controlled trials. J Am Coll Nutr. 2010;29(5):443–54.

    Article  PubMed  Google Scholar 

  137. Bernard JY, Armand M, Garcia C, Forhan A, De Agostini M, Charles MA, et al. The association between linoleic acid levels in colostrum and child cognition at 2 and 3 y in the EDEN cohort. Pediatr Res. 2015;77(6):829–35.

    Article  PubMed  Google Scholar 

  138. Bernard JY, Armand M, Peyre H, Garcia C, Forhan A, De Agostini M, et al. Breastfeeding, Polyunsaturated Fatty Acid Levels in Colostrum and Child Intelligence Quotient at Age 5-6 Years. J Pediatr. 2017;183:43–50.e3.

    Google Scholar 

  139. Ramakrishnan U, Gonzalez-Casanova I, Schnaas L, DiGirolamo A, Quezada AD, Pallo BC, et al. Prenatal supplementation with DHA improves attention at 5 y of age: a randomized controlled trial. Am J Clin Nutr. 2016;104(4):1075–82.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sakayori N, Kikkawa T, Tokuda H, Kiryu E, Yoshizaki K, Kawashima H, et al. Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites. Stem Cells. 2016;34(2):470–82.

    Article  PubMed  Google Scholar 

  141. Vancassel S, Blondeau C, Lallemand S, Cador M, Linard A, Lavialle M, et al. Hyperactivity in the rat is associated with spontaneous low level of n-3 polyunsaturated fatty acids in the frontal cortex. Behav Brain Res. 2007;180(2):119–26.

    Article  PubMed  Google Scholar 

  142. Levant B, Zarcone TJ, Fowler SC. Developmental effects of dietary n-3 fatty acids on activity and response to novelty. Physiol Behav. 2010;101(1):176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol. 2003;101(3):469–79.

    PubMed  Google Scholar 

  144. Colombo J, Kannass KN, Shaddy DJ, Kundurthi S, Maikranz JM, Anderson CJ, et al. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev. 2004;75(4):1254–67.

    Article  PubMed  Google Scholar 

  145. Daniels JL, Longnecker MP, Rowland AS, Golding J, Health ASTUoBIoC. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology. 2004;15(4):394–402.

    Article  PubMed  Google Scholar 

  146. Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, et al. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007;369(9561):578–85.

    Article  PubMed  Google Scholar 

  147. Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: evidence from the inuit of arctic Quebec. J Pediatr. 2008;152(3):356–64.

    Article  PubMed  Google Scholar 

  148. Oken E, Østerdal ML, Gillman MW, Knudsen VK, Halldorsson TI, Strøm M, et al. Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the Danish National Birth Cohort. Am J Clin Nutr. 2008;88(3):789–96.

    Article  PubMed  Google Scholar 

  149. Boucher O, Burden MJ, Muckle G, Saint-Amour D, Ayotte P, Dewailly E, et al. Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am J Clin Nutr. 2011;93(5):1025–37.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Starling P, Charlton K, McMahon AT, Lucas C. Fish intake during pregnancy and foetal neurodevelopment–a systematic review of the evidence. Nutrients. 2015;7(3):2001–14.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Agriculture USDoHaHSaUSDo. 2015–2020 Dietary Guidelines for Americans 8th ed.

    Google Scholar 

  152. So Breastfeeding. Breastfeeding and the use of human milk. Pediatrics. 2012;129(3):e827–41.

    Article  Google Scholar 

  153. Lenihan-Geels G, Bishop KS, Ferguson LR. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients. 2013;5(4):1301–15.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Niculescu MD, Lupu DS. High fat diet-induced maternal obesity alters fetal hippocampal development. Int J Dev Neurosci. 2009;27(7):627–33.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sullivan EL, Nousen EK, Chamlou KA. Maternal high fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav. 2014;123:236–42.

    Article  PubMed  Google Scholar 

  156. Edlow AG. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat Diagn. 2017;37(1):95–110.

    Article  PubMed  Google Scholar 

  157. Lyall K, Munger KL, O’Reilly É, Santangelo SL, Ascherio A. Maternal dietary fat intake in association with autism spectrum disorders. Am J Epidemiol. 2013;178(2):209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kramer MS, Aboud F, Mironova E, Vanilovich I, Platt RW, Matush L, et al. Breastfeeding and child cognitive development: new evidence from a large randomized trial. Arch Gen Psychiatry. 2008;65(5):578–84.

    Article  PubMed  Google Scholar 

  159. Smithers LG, Kramer MS, Lynch JW. Effects of breastfeeding on obesity and intelligence: causal insights from different study designs. JAMA Pediatr. 2015;169(8):707–8.

    Article  PubMed  Google Scholar 

  160. Belfort MB, Rifas-Shiman SL, Kleinman KP, Guthrie LB, Bellinger DC, Taveras EM, et al. Infant feeding and childhood cognition at ages 3 and 7 years: Effects of breastfeeding duration and exclusivity. JAMA Pediatr. 2013;167(9):836–44.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Brown Belfort M. The Science of Breastfeeding and Brain Development. Breastfeed Med. 2017;12(8):459–61.

    Article  Google Scholar 

  162. Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9(3).

    Article  PubMed Central  Google Scholar 

  163. Walfisch A, Sermer C, Cressman A, Koren G. Breast milk and cognitive development–the role of confounders: a systematic review. BMJ Open. 2013;3(8):e003259.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chang JP, Su KP, Mondelli V, Pariante CM. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: A systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology. 2018;43(3):534–45.

    Article  PubMed  Google Scholar 

  165. Zhang XW, Hou WS, Li M, Tang ZY. Omega-3 fatty acids and risk of cognitive decline in the elderly: a meta-analysis of randomized controlled trials. Aging Clin Exp Res. 2016;28(1):165–6.

    Article  PubMed  Google Scholar 

  166. Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr. 2016;103(2):330–40.

    Article  PubMed  Google Scholar 

  167. Gumpricht E, Rockway S. Can ω-3 fatty acids and tocotrienol-rich vitamin E reduce symptoms of neurodevelopmental disorders? Nutrition. 2014;30(7–8):733–8.

    Article  PubMed  Google Scholar 

  168. Farina N LD, Isaac M, Tabet N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. 2017.

    Google Scholar 

  169. Pompili M, Longo L, Dominici G, Serafini G, Lamis DA, Sarris J, et al. Polyunsaturated fatty acids and suicide risk in mood disorders: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2017;74:43–56.

    Article  PubMed  Google Scholar 

  170. Tsai AC, Lucas M, Okereke OI, O’Reilly EJ, Mirzaei F, Kawachi I, et al. Suicide mortality in relation to dietary intake of n-3 and n-6 polyunsaturated fatty acids and fish: equivocal findings from 3 large US cohort studies. Am J Epidemiol. 2014;179(12):1458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Chang JP, Lin CY, Lin PY, Shih YH, Chiu TH, Ho M, et al. Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt C):273–8.

    Article  PubMed  Google Scholar 

  172. Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72(12):1577–84.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sarris J, Mischoulon D, Schweitzer I. Adjunctive nutraceuticals with standard pharmacotherapies in bipolar disorder: a systematic review of clinical trials. Bipolar Disord. 2011;13(5–6):454–65.

    Article  PubMed  Google Scholar 

  174. Sarris J, Mischoulon D, Schweitzer I. Omega-3 for bipolar disorder: meta-analyses of use in mania and bipolar depression. J Clin Psychiatry. 2012;73(1):81–6.

    Article  PubMed  Google Scholar 

  175. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, et al. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS ONE. 2014;9(5):e96905.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Li F, Liu X, Zhang D. Fish consumption and risk of depression: a meta-analysis. J Epidemiol Community Health. 2016;70(3):299–304.

    Article  PubMed  Google Scholar 

  177. Appleton KM, Sallis HM, Perry R, Ness AR, Churchill R. ω-3 Fatty acids for major depressive disorder in adults: an abridged Cochrane review. BMJ Open. 2016;6(3):e010172.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Amminger GP, Schafer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM, et al. Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry. 2010;67(2):146–54.

    Article  PubMed  Google Scholar 

  179. Su KP, Tseng, P.T., Lin, P.Y. Okubo, R. Chen, T.Y. Chen, Y.W., & Matsuoka, Y.J.. Association of use of omega-3 polyunsaturated fatty acids with changes in severity of anxiety symptoms a systematic review and meta-analysis. JAMA Netw Open. 2018;1(5):1–16.

    Google Scholar 

  180. Jacka FN, Ystrom E, Brantsaeter AL, Karevold E, Roth C, Haugen M, et al. Maternal and early postnatal nutrition and mental health of offspring by age 5 years: a prospective cohort study. J Am Acad Child Adolesc Psychiatry. 2013;52(10):1038–47.

    Article  PubMed  Google Scholar 

  181. Borge TC, Aase H, Brantsæter AL, Biele G. The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and meta-analysis. BMJ Open. 2017;7(9):e016777.

    Article  PubMed  PubMed Central  Google Scholar 

  182. O’Neil A, Quirk SE, Housden S, Brennan SL, Williams LJ, Pasco JA, et al. Relationship between diet and mental health in children and adolescents: a systematic review. Am J Public Health. 2014;104(10):e31–42.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Pina-Camacho L, Jensen SK, Gaysina D, Barker ED. Maternal depression symptoms, unhealthy diet and child emotional-behavioural dysregulation. Psychol Med. 2015;45(9):1851–60.

    Article  PubMed  Google Scholar 

  184. de Lauzon-Guillain B, Jones L, Oliveira A, Moschonis G, Betoko A, Lopes C, et al. The influence of early feeding practices on fruit and vegetable intake among preschool children in 4 European birth cohorts. Am J Clin Nutr. 2013;98(3):804–12.

    Article  PubMed  Google Scholar 

  185. Jones L, Moschonis G, Oliveira A, de Lauzon-Guillain B, Manios Y, Xepapadaki P, et al. The influence of early feeding practices on healthy diet variety score among pre-school children in four European birth cohorts. Public Health Nutr. 2015;18(10):1774–84.

    Article  PubMed  Google Scholar 

  186. Emmett PM, Jones LR, Golding J. Pregnancy diet and associated outcomes in the avon longitudinal study of parents and children. Nutr Rev. 2015;73(Suppl 3):154–74.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Freitas-Vilela AA, Pearson RM, Emmett P, Heron J, Smith AD, Emond A, et al. Maternal dietary patterns during pregnancy and intelligence quotients in the offspring at 8 years of age: Findings from the ALSPAC cohort. Matern Child Nutr. 2017.

    Google Scholar 

  188. Jacka FN, Kremer PJ, Leslie ER, Berk M, Patton GC, Toumbourou JW, et al. Associations between diet quality and depressed mood in adolescents: results from the Australian healthy neighbourhoods study. Aust N Z J Psychiatry. 2010;44(5):435–42.

    Article  PubMed  Google Scholar 

  189. Jacka FN, Kremer PJ, Berk M, de Silva-Sanigorski AM, Moodie M, Leslie ER, et al. A prospective study of diet quality and mental health in adolescents. PLoS ONE. 2011;6(9):e24805.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jacka FN, Rothon C, Taylor S, Berk M, Stansfeld SA. Diet quality and mental health problems in adolescents from East London: a prospective study. Soc Psychiatry Psychiatr Epidemiol. 2013;48(8):1297–306.

    Article  PubMed  Google Scholar 

  191. Haapala EA, Eloranta AM, Venäläinen T, Schwab U, Lindi V, Lakka TA. Associations of diet quality with cognition in children - the Physical Activity and Nutrition in Children Study. Br J Nutr. 2015;114(7):1080–7.

    Article  PubMed  Google Scholar 

  192. Trapp GS, Allen KL, Black LJ, Ambrosini GL, Jacoby P, Byrne S, et al. A prospective investigation of dietary patterns and internalizing and externalizing mental health problems in adolescents. Food Sci Nutr. 2016;4(6):888–96.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2014;99(1):181–97.

    Article  PubMed  Google Scholar 

  194. Li Y, Lv MR, Wei YJ, Sun L, Zhang JX, Zhang HG, et al. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017;253:373–82.

    Article  PubMed  Google Scholar 

  195. Henriksson P, Cuenca-García M, Labayen I, Esteban-Cornejo I, Henriksson H, Kersting M, et al. Diet quality and attention capacity in European adolescents: the healthy lifestyle in Europe by nutrition in adolescence (HELENA) study. Br J Nutr. 2017;117(11):1587–95.

    Article  PubMed  Google Scholar 

  196. Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann Neurol. 2013;74(4):580–91.

    Article  PubMed  Google Scholar 

  197. Rahe C, Unrath M, Berger K. Dietary patterns and the risk of depression in adults: a systematic review of observational studies. Eur J Nutr. 2014;53(4):997–1013.

    Article  PubMed  Google Scholar 

  198. Berendsen AAM, Kang JH, van de Rest O, Feskens EJM, de Groot LCPG, Grodstein F. The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in american older women. J Am Med Dir Assoc. 2017;18(5):427–32.

    Article  PubMed  Google Scholar 

  199. Tangney CC. DASH and mediterranean-type dietary patterns to maintain cognitive health. Curr Nutr Rep. 2014;3(1):51–61.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Panagiotakos DB, Pitsavos C, Arvaniti F, Stefanadis C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev Med. 2007;44(4):335–40.

    Article  PubMed  Google Scholar 

  201. McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: the health and retirement study. J Am Geriatr Soc. 2017;65(8):1857–62.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–22.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Carter CM, Egger J, Soothill JF. A dietary management of severe childhood migraine. Hum Nutr Appl Nutr. 1985;39(4):294–303.

    PubMed  Google Scholar 

  204. Carter CM, Urbanowicz M, Hemsley R, Mantilla L, Strobel S, Graham PJ, et al. Effects of a few food diet in attention deficit disorder. Arch Dis Child. 1993;69(5):564–8.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Pelsser LM, Frankena K, Toorman J, Rodrigues Pereira R. Diet and ADHD, reviewing the evidence: A systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behavior of children with ADHD. PLoS ONE. 2017;12(1):e0169277.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Casas M, Chatzi L, Carsin AE, Amiano P, Guxens M, Kogevinas M, et al. Maternal pre-pregnancy overweight and obesity, and child neuropsychological development: Two southern european birth cohort studies. Int J Epidemiol. 2013;42(2):506–17.

    Article  PubMed  Google Scholar 

  207. Pugh SJ, Richardson GA, Hutcheon JA, Himes KP, Brooks MM, Day NL, et al. Maternal obesity and excessive gestational weight gain are associated with components of child cognition. J Nutr. 2015;145(11):2562–9.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Li YM, Ou JJ, Liu L, Zhang D, Zhao JP, Tang SY. Association between maternal obesity and autism spectrum disorder in offspring: A meta-analysis. J Autism Dev Disord. 2016;46(1):95–102.

    Article  PubMed  Google Scholar 

  209. Wahlbeck K, Forsén T, Osmond C, Barker DJ, Eriksson JG. Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry. 2001;58(1):48–52.

    Article  PubMed  Google Scholar 

  210. Heikura U, Taanila A, Hartikainen AL, Olsen P, Linna SL, von Wendt L, et al. Variations in prenatal sociodemographic factors associated with intellectual disability: a study of the 20-year interval between two birth cohorts in northern Finland. Am J Epidemiol. 2008;167(2):169–77.

    Article  PubMed  Google Scholar 

  211. Hinkle SN, Schieve LA, Stein AD, Swan DW, Ramakrishnan U, Sharma AJ. Associations between maternal prepregnancy body mass index and child neurodevelopment at 2 years of age. Int J Obes (Lond). 2012;36(10):1312–9.

    Article  PubMed Central  Google Scholar 

  212. Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S–20S.

    PubMed  Google Scholar 

  213. Schlotz W, Phillips DI. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun. 2009;23(7):905–16.

    Article  PubMed  Google Scholar 

  214. Palmer AA, Printz DJ, Butler PD, Dulawa SC, Printz MP. Prenatal protein deprivation in rats induces changes in prepulse inhibition and NMDA receptor binding. Brain Res. 2004;996(2):193–201.

    Article  PubMed  Google Scholar 

  215. Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90(3):285–326.

    Article  PubMed  Google Scholar 

  216. Liang J, Matheson BE, Kaye WH, Boutelle KN. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int J Obes (Lond). 2014;38(4):494–506.

    Article  Google Scholar 

  217. Chojnacki MR, Raine LB, Drollette ES, Scudder MR, Kramer AF, Hillman CH, et al. The negative influence of adiposity extends to intraindividual variability in cognitive control among preadolescent children. Obesity (Silver Spring). 2018;26(2):405–11.

    Article  Google Scholar 

  218. Baumgartner NW, Walk AM, Edwards CG, Covello AR, Chojnacki MR, Reeser GE, et al. Relationship between physical activity, adiposity, and attentional inhibition. J Phys Act Health. 2018;15(3):191–6.

    Article  PubMed  Google Scholar 

  219. Oddy WH, Allen KL, Trapp GSA, Ambrosini GL, Black LJ, Huang RC, et al. Dietary patterns, body mass index and inflammation: Pathways to depression and mental health problems in adolescents. Brain Behav Immun. 2018;69:428–39.

    Article  PubMed  Google Scholar 

  220. Benito-León J, Mitchell AJ, Hernández-Gallego J, Bermejo-Pareja F. Obesity and impaired cognitive functioning in the elderly: a population-based cross-sectional study (NEDICES). Eur J Neurol. 2013;20(6):899–906, e76–7.

    Article  PubMed  Google Scholar 

  221. Albanese E, Launer LJ, Egger M, Prince MJ, Giannakopoulos P, Wolters FJ, et al. Body mass index in midlife and dementia: Systematic review and meta-regression analysis of 589, 649 men and women followed in longitudinal studies. Alzheimers Dement (Amst). 2017;8:165–78.

    PubMed  PubMed Central  Google Scholar 

  222. Roberts RE, Kaplan GA, Shema SJ, Strawbridge WJ. Are the obese at greater risk for depression? Am J Epidemiol. 2000;152(2):163–70.

    Article  PubMed  Google Scholar 

  223. Carpenter KM, Hasin DS, Allison DB, Faith MS. Relationships between obesity and DSM-IV major depressive disorder, suicide ideation, and suicide attempts: results from a general population study. Am J Public Health. 2000;90(2):251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Rivas-García TE, Marcelo-Pons M, Martínez-Arnau F, Serra-Catalá N, Santamaría-Carrillo Y, Cauli O. Blood zinc levels and cognitive and functional evaluation in non-demented older patients. Exp Gerontol. 2018.

    Google Scholar 

  225. Steenweg-de Graaff J, Roza SJ, Steegers EA, Hofman A, Verhulst FC, Jaddoe VW, et al. Maternal folate status in early pregnancy and child emotional and behavioral problems: the Generation R Study. Am J Clin Nutr. 2012;95(6):1413–21.

    Article  PubMed  Google Scholar 

  226. Gokcen C, Kocak N, Pekgor A. Methylenetetrahydrofolate reductase gene polymorphisms in children with attention deficit hyperactivity disorder. Int J Med Sci. 2011;8(7):523–8.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Bailey RL, West KP, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66(Suppl 2):22–33.

    Article  PubMed  Google Scholar 

  228. Youdim AaG, David S. 2018. https://www.merckmanuals.com/professional/nutritional-disorders/nutrition-general-considerations/nutrient-drug-interactions on September 7 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Katrinak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katrinak, M., Irani, F., Armstrong, C.L., Kerr, S.L. (2019). Nutrition in Neurocognition and Mental Health. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-14895-9_28

Download citation

Publish with us

Policies and ethics