Skip to main content

Improving Business-as-Usual Scenarios in Land Change Modelling by Extending the Calibration Period and Integrating Demographic Data

  • Conference paper
  • First Online:
Geospatial Technologies for Local and Regional Development (AGILE 2019)

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Included in the following conference series:

Abstract

Land use and land cover change (LUCC) models are increasingly being used to anticipate the future of territories, particularly through the prospective scenario method. In the case of so-called trend or Business-as-Usual (BAU) scenarios, the aim is to observe the current dynamics and to extend them into the future. However, as they are implemented as baseline simulation in most current software packages, BAU scenarios are calibrated from a training period built from only two dates. We argue that this limits the quantitative estimation of future change intensity, and we illustrate it from a simple model of deforestation in Northern Ecuadorian Amazon using the Land Change Modeler (LCM) software package. This paper proposes a contribution to improve BAU scenarios calibration by mainly two enhancements: taking into account a longer calibration period for estimating change quantities and the integration of thematic data in change probabilities matrices. We thus demonstrate the need to exceed the linear construction of BAU scenarios as well as the need to integrate thematic and particularly socio-demographic data into the estimation of future quantities of change. The spatial aspects of our quantitative adjustments are discussed and tend to show that improvements in the quantitative aspects should not be dissociated from an improvement in the spatial allocation of changes, which may lead to a decrease in the predictive accuracy of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armenteras D, Espelta JM, Rodríguez N, Retana J (2017) Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob Environ Change 46:139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002

    Article  Google Scholar 

  • Baynard CW, Ellis JM, Davis H (2013) Roads, petroleum and accessibility: the case of eastern Ecuador. GeoJournal 78:675–695. https://doi.org/10.1007/s10708-012-9459-5

    Article  Google Scholar 

  • Bilsborrow RE, Barbieri AF, Pan W (2004) Changes in population and land use over time in the Ecuadorian Amazon. Acta Amaz 34:635–647. https://doi.org/10.1590/S0044-59672004000400015

    Article  Google Scholar 

  • Bromley R (1981) The colonization of humid tropical areas in Ecuador. Singap J Trop Geogr 2:15–26. https://doi.org/10.1111/j.1467-9493.1981.tb00114.x

    Article  Google Scholar 

  • Brown LA, Sierra R, Southgate D, Labao L (1992) Complementary perspectives as a means of understanding regional change: frontier settlement in the Ecuador Amazon. Environ Plan A 24:939–961. https://doi.org/10.1068/a240939

    Article  Google Scholar 

  • Camacho Olmedo MT, Mas JF (2018) Markov Chain. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 441–445

    Chapter  Google Scholar 

  • Camacho Olmedo MT, Paegelow M, Mas JF, Escobar F (2018) Geomatic approaches for modeling land change scenarios. An introduction. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 1–8

    Chapter  Google Scholar 

  • Carr DL (2003) Proximate population factors and deforestation in tropical agricultural frontiers. Popul Environ 25:585–612. https://doi.org/10.1023/B:POEN.0000039066.05666.8d

    Article  Google Scholar 

  • Castella J-C, Verburg PH (2007) Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecol Model 202:410–420. https://doi.org/10.1016/j.ecolmodel.2006.11.011

    Article  Google Scholar 

  • Chen H, Pontius RG (2010) Diagnostic tools to evaluate a spatial land change projection along a gradient of an explanatory variable. Landsc Ecol 25:1319–1331. https://doi.org/10.1007/s10980-010-9519-5

    Article  Google Scholar 

  • Chhabra A, Geist H, Houghton RA, Haberl H, Braimoh AK, Vlek PLG, Patz J, Xu J, Ramankutty N, Coomes O, Lambin EF (2006) Multiple impacts of land-use/cover change. In: Lambin EF, Geist H (eds) Land-use and land-cover change. Springer, Berlin, Heidelberg, pp 71–116

    Chapter  Google Scholar 

  • Ching W-K, Huang X, Ng MK, Siu T-K (2013) Higher-order Markov chains. Markov chains. Springer US, Boston, MA, pp 141–176

    Chapter  Google Scholar 

  • Comber A, Balzter H, Cole B, Fisher P, Johnson S, Ogutu B (2016) Methods to quantify regional differences in land cover change. Remote Sens 8:176. https://doi.org/10.3390/rs8030176

    Article  Google Scholar 

  • De Grande P (2016) El formato Redatam/The Redatam format. Estudios Demográficos y Urbanos 31:811. https://doi.org/10.24201/edu.v31i3.15

    Article  Google Scholar 

  • Eastman J (2014) TerrSet geospatial monitoring and modeling system. Clark University, Worcester, MA

    Google Scholar 

  • Eastman JR, Toledano J (2018) A short presentation of the land change modeler (LCM). In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 499–505

    Chapter  Google Scholar 

  • Escobar F, van Delden H, Hewitt R (2018) LUCC scenarios. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 81–97

    Chapter  Google Scholar 

  • Floriani LD, Magillo P (2009) Triangulated irregular network. In: Liu L, Özsu TT (eds) Encyclopedia of database systems. Springer US, Boston, MA, pp 3178–3179

    Google Scholar 

  • Garcia Alvarez D (2018) Aproximación al Estudio de la Incertidumbre en la Modelización del Cambio de Usos y Coberturas del Suelo (LUCC). Universidad de Granada

    Google Scholar 

  • Geist H, McConnell W, Lambin EF, Moran E, Alves D, Rudel T (2006) Causes and trajectories of land-use/cover change. In: Lambin EF, Geist H (eds) Land-use and land-cover change. Springer, Berlin, Heidelberg, pp 41–70

    Chapter  Google Scholar 

  • Hiraoka M, Yamamoto S (1980) Agricultural development in the Upper Amazon of Ecuador. Geogr Rev 70:423. https://doi.org/10.2307/214077

    Article  Google Scholar 

  • Houet T, Aguejdad R, Doukari O, Battaia G, Clarke K (2016) Description and validation of a “non path-dependent” model for projecting contrasting urban growth futures. Cybergeo. https://doi.org/10.4000/cybergeo.27397

    Article  Google Scholar 

  • Houet T, Gourmelon F (2014) La géoprospective – Apport de la dimension spatiale aux démarches prospectives. Cybergeo. https://doi.org/10.4000/cybergeo.26194

    Article  Google Scholar 

  • Houssou L (2016) Simulation sociale à base d’agents du comportement microéconomique des ménages en Amazonie équatorienne, face aux contaminations pétrolières, aux dynamiques économiques et aux politiques publiques. MSc thesis, Université nationale du Vietnam, Institut francophone international, Hanoi, Vietnam

    Google Scholar 

  • Jarrín-V. PS, Tapia Carrillo L, Zamora G (2017) Demografía y transformación territorial: medio siglo de cambio en la región amazónica de Ecuador/Demography and territorial transformation: half a century of change in the Amazonian Region of Ecuador. Eutopía, Revista de Desarrollo Económico Territorial 81. https://doi.org/10.17141/eutopia.12.2017.2913

  • Juteau-Martineau G, Becerra S, Maurice L (2014) Ambiente, petróleo y vulnerabilidad política en el Oriente Ecuatoriano: ¿hacia nuevas formas de gobernanza energética? América Latina Hoy 67:119. https://doi.org/10.14201/alh201467119137

    Article  Google Scholar 

  • Kitchin R (2013) Big data and human geography: opportunities, challenges and risks. Dialogues Hum Geogr 3:262–267. https://doi.org/10.1177/2043820613513388

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28:823–870. https://doi.org/10.1080/01431160600746456

    Article  Google Scholar 

  • Maestripieri N, Paegelow M (2013) Validation spatiale de deux modèles de simulation: l’exemple des plantations industrielles au Chili. Cybergeo. https://doi.org/10.4000/cybergeo.26042

    Article  Google Scholar 

  • Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Dirmeyer PA, McAlpine C, Carleton AM, Hale R, Gameda S, Beltrán-Przekurat A, Baker B, McNider R, Legates DR, Shepherd M, Du J, Blanken PD, Frauenfeld OW, Nair US, Fall S (2014) Land cover changes and their biogeophysical effects on climate: land cover changes and their biogeophysical effects on climate. Int J Climatol 34:929–953. https://doi.org/10.1002/joc.3736

    Article  Google Scholar 

  • Martin D, Bracken I (1993) The integration of socioeconomic and physical resource data for applied land management information systems. Appl Geogr 13:45–53. https://doi.org/10.1016/0143-6228(93)90079-G

    Article  Google Scholar 

  • Mas J (2004) Modelling deforestation using GIS and artificial neural networks. Environ Model Softw 19:461–471. https://doi.org/10.1016/S1364-8152(03)00161-0

    Article  Google Scholar 

  • Mas J-F (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20:139–152. https://doi.org/10.1080/014311699213659

    Article  Google Scholar 

  • Mas J-F, Kolb M, Paegelow M, Camacho Olmedo MT, Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Model Softw 51:94–111. https://doi.org/10.1016/j.envsoft.2013.09.010

    Article  Google Scholar 

  • Mas JF, Paegelow M, Camacho Olmedo MT (2018) LUCC modeling approaches to calibration. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 11–25

    Chapter  Google Scholar 

  • Mas J-F, Soares Filho B, Pontius R, Farfán Gutiérrez M, Rodrigues H (2013) A suite of tools for ROC analysis of spatial models. ISPRS Int J Geo-Inf 2:869–887. https://doi.org/10.3390/ijgi2030869

    Article  Google Scholar 

  • Matthews RB, Gilbert NG, Roach A, Polhill JG, Gotts NM (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22:1447–1459

    Article  Google Scholar 

  • Mena CF, Bilsborrow RE, McClain ME (2006) Socioeconomic drivers of deforestation in the Northern Ecuadorian Amazon. Environ Manage 37:802–815. https://doi.org/10.1007/s00267-003-0230-z

    Article  Google Scholar 

  • Morin L (2015) Diagnostic agraire d’un front pionnier en Amazonie équatorienne, Paroisse de Dayuma, province d’Orellana, Equateur. MSc thesis, SupAgro Montpellier IRC

    Google Scholar 

  • National Research Council (1998) People and pixels: linking remote sensing and social science. National Academies Press, Washington, D.C.

    Google Scholar 

  • Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities: interactions between climate change and land use change. Wiley Interdiscip Rev Clim Change 5:317–335. https://doi.org/10.1002/wcc.271

    Article  Google Scholar 

  • Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding T-S, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens IPF (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436:1016–1019. https://doi.org/10.1038/nature03850

    Article  Google Scholar 

  • Paegelow M (2018) Impact and integration of multiple training dates for Markov based land change modeling. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 121–138

    Chapter  Google Scholar 

  • Paegelow M, Camacho Olmedo MT (2010) Modelos de simulación espacio-temporal y Teledetección: el método de la segmentación para la cartografía cronológica de usos del suelo. Serie Geográfica – Universidad de Alcalá, pp 19–34

    Google Scholar 

  • Paegelow M, Camacho Olmedo MT, Mas J-F, Houet T (2014) Benchmarking of LUCC modelling tools by various validation techniques and error analysis. Cybergeo. https://doi.org/10.4000/cybergeo.26610

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337. https://doi.org/10.1111/1467-8306.9302004

    Article  Google Scholar 

  • Perz SG, Walker RT (2002) Household life cycles and secondary forest cover among small farm colonists in the Amazon. World Dev 30:1009–1027

    Article  Google Scholar 

  • Pontius GR (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011–1016

    Google Scholar 

  • Pontius RG, Huffaker D, Denman K (2004) Useful techniques of validation for spatially explicit land-change models. Ecol Model 179:445–461. https://doi.org/10.1016/j.ecolmodel.2004.05.010

    Article  Google Scholar 

  • Pontius RG, Millones M (2011) Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32:4407–4429. https://doi.org/10.1080/01431161.2011.552923

    Article  Google Scholar 

  • Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248. https://doi.org/10.1016/S0167-8809(01)00187-6

    Article  Google Scholar 

  • Preston SH (1996) The effect of population growth on environmental quality. Popul Res Policy Rev 15:95–108. https://doi.org/10.1007/BF00126129

    Article  Google Scholar 

  • Rodrigues H, Soares-Filho B (2018) A short presentation of Dinamica EGO. In: Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F (eds) Geomatic approaches for modeling land change scenarios. Springer International Publishing, Cham, pp 493–498

    Chapter  Google Scholar 

  • Soares-Filho BS, Coutinho Cerqueira G, Lopes Pennachin C (2002) Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235. https://doi.org/10.1016/S0304-3800(02)00059-5

    Article  Google Scholar 

  • Tso B, Mather P (2009) Classification methods for remotely sensed data, 2nd edn. CRC Press

    Google Scholar 

  • Veldkamp A, Lambin E (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6. https://doi.org/10.1016/S0167-8809(01)00199-2

    Article  Google Scholar 

  • Wasserstrom R, Southgate D (2013) Deforestation, Agrarian reform and oil development in Ecuador, 1964–1994. Nat Resour 04:31–44. https://doi.org/10.4236/nr.2013.41004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Mejean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mejean, R., Paegelow, M., Saqalli, M., Kaced, D. (2020). Improving Business-as-Usual Scenarios in Land Change Modelling by Extending the Calibration Period and Integrating Demographic Data. In: Kyriakidis, P., Hadjimitsis, D., Skarlatos, D., Mansourian, A. (eds) Geospatial Technologies for Local and Regional Development. AGILE 2019. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-030-14745-7_14

Download citation

Publish with us

Policies and ethics