Skip to main content

Heterogeneity and Plasticity of Breast Cancer Stem Cells

  • Chapter
  • First Online:
Book cover Stem Cells Heterogeneity in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1139))

Abstract

In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.

Recently, adding more complexity to the system, it has been demonstrated that BCSCs maintain high levels of plasticity, being able to change between mesenchymal-like and epithelial-like states in a process regulated by the tumour microenvironment. These stem cell state transitions play a fundamental role in the process of tumour metastasis, as well as in the resistance to putative therapeutic strategies to target these cells. In this chapter, it will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis. A major focus will also be given to potential clinical implications of these discoveries in breast cancer recurrence and to possible BCSC targeted therapeutics by the use of specific biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham BK et al (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154–1159

    CAS  PubMed  Google Scholar 

  • Alamgeer M et al (2014) Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer. Breast Cancer Res 16(2):R44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alison MR, Lim SM, Nicholson LJ (2011) Cancer stem cells: problems for therapy? J Pathol 223(2):147–161

    Article  CAS  PubMed  Google Scholar 

  • Armstrong A, Eck SL (2003) EpCAM: a new therapeutic target for an old cancer antigen. Cancer Biol Ther 2(4):320–326

    Article  CAS  PubMed  Google Scholar 

  • Baccelli I et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544

    Article  CAS  PubMed  Google Scholar 

  • Balic M et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615–5621

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Beerling E et al (2016) Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 14(10):2281–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensimon J et al (2013) CD24(−/low) stem-like breast cancer marker defines the radiation-resistant cells involved in memorization and transmission of radiation-induced genomic instability. Oncogene 32(2):251–258

    Article  CAS  PubMed  Google Scholar 

  • Bi Y et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Brabletz T (2012) To differentiate or not--routes towards metastasis. Nat Rev Cancer 12(6):425–436

    Article  CAS  PubMed  Google Scholar 

  • Buck E et al (2008) Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res 68(20):8322–8332

    Article  CAS  PubMed  Google Scholar 

  • Calabrese P, Tavare S, Shibata D (2004) Pretumor progression: clonal evolution of human stem cell populations. Am J Pathol 164(4):1337–1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Cameron MD et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    CAS  PubMed  Google Scholar 

  • Celià-Terrassa T et al (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 122(5):1849–1868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaffer CL et al (2016) EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35(4):645–654

    Article  PubMed  Google Scholar 

  • Chakrabarti R et al (2012) Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 14(11):1212–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers AF et al (2001) Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10(2):243–255, vii

    Article  CAS  PubMed  Google Scholar 

  • Charafe-Jauffret E et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Choi YS et al (2009) Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol 329(2):227–241

    Article  CAS  PubMed  Google Scholar 

  • Chua KN et al (2012) A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma. PLoS One 7(3):e33183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colak S, Medema JP (2014) Cancer stem cells--important players in tumor therapy resistance. FEBS J 281(21):4779–4791

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JS, Miele L (2018) Breast cancer stem cells. Biomedicine 6(3):77

    Google Scholar 

  • Croker AK, Allan AL (2012) Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44(+) human breast cancer cells. Breast Cancer Res Treat 133(1):75–87

    Article  CAS  PubMed  Google Scholar 

  • Croker AK et al (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13(8B):2236–2252

    Article  PubMed  Google Scholar 

  • Crowder SW et al (2014) Cancer stem cells under hypoxia as a chemoresistance factor in breast and brain. Curr Pathobiol Rep 2(1):33–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Diehn M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Ewald AJ et al (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125(Pt 11):2638–2654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  • Fietz SA et al (2012) Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc Natl Acad Sci U S A 109(29):11836–11841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foubert E, De Craene B, Berx G (2010) Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res 12(3):206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frederick BA et al (2007) Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol Cancer Ther 6(6):1683–1691

    Article  CAS  PubMed  Google Scholar 

  • Friedrichs K et al (1995) High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res 55(4):901–906

    CAS  PubMed  Google Scholar 

  • Fuchs BC et al (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68(7):2391–2399

    Article  CAS  PubMed  Google Scholar 

  • Gao H et al (2012) The BMP inhibitor coco reactivates breast cancer cells at lung metastatic sites. Cell 150(4):764–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestier C et al (2007a) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestier C et al (2007b) ERBB2 phosphorylation and trastuzumab sensitivity of breast cancer cell lines. Oncogene 26(50):7163–7169

    Article  CAS  PubMed  Google Scholar 

  • Ginestier C et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodarzi N et al (2014) CD44-targeted docetaxel conjugate for cancer cells and cancer stem-like cells: a novel hyaluronic acid-based drug delivery system. Chem Biol Drug Des 83(6):741–752

    Article  CAS  PubMed  Google Scholar 

  • Grigore AD et al (2016) Tumor budding: the name is EMT. Partial EMT. J Clin Med 5(5):51

    Article  PubMed Central  CAS  Google Scholar 

  • Guo W et al (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148(5):1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hirschmann-Jax C et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honeth G et al (2008) The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10(3):R53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoshiba T (2018) An extracellular matrix (ECM) model at high malignant colorectal tumor increases chondroitin sulfate chains to promote epithelial-mesenchymal transition and chemoresistance acquisition. Exp Cell Res 370(2):571–578

    Article  CAS  PubMed  Google Scholar 

  • Jin Q et al (2018) Decellularized breast matrix as bioactive microenvironment for in vitro three-dimensional cancer culture. J Cell Physiol 234(4):3425–3435

    Article  PubMed  CAS  Google Scholar 

  • Jolly MK, Mani SA, Levine H (2018) Hybrid epithelial/mesenchymal phenotype(s): the ‘fittest’ for metastasis? Biochim Biophys Acta Rev Cancer 1870(2):151–157

    Article  CAS  PubMed  Google Scholar 

  • Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamanos NK (2014) Matrix-mediated cell behaviour and properties. Biochim Biophys Acta 1840(8):2385

    Article  CAS  PubMed  Google Scholar 

  • Karimi-Busheri F et al (2010) Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res 12(3):R31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korkaya H et al (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkaya H, Liu S, Wicha MS (2011) Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin Cancer Res 17(19):6125–6129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkaya H et al (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47(4):570–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235(12):3404–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Das A, Sen S (2014) Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol BioSyst 10(4):838–850

    Article  CAS  PubMed  Google Scholar 

  • Lagadec C et al (2010) Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res 12(1):R13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679

    Article  CAS  PubMed  Google Scholar 

  • Lim E et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913

    Article  CAS  PubMed  Google Scholar 

  • Lindeman GJ, Visvader JE (2010) Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia Pac J Clin Oncol 6(2):89–97

    Article  PubMed  Google Scholar 

  • Litvinov SV et al (1994) Evidence for a role of the epithelial glycoprotein 40 (Ep-CAM) in epithelial cell-cell adhesion. Cell Adhes Commun 2(5):417–428

    Article  CAS  PubMed  Google Scholar 

  • Litvinov SV et al (1996) Expression of Ep-CAM in cervical squamous epithelia correlates with an increased proliferation and the disappearance of markers for terminal differentiation. Am J Pathol 148(3):865–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356(3):217–226

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2008) Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 135(3):579–588

    Article  CAS  PubMed  Google Scholar 

  • Liu H et al (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 107(42):18115–18120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2(1):78–91

    Article  CAS  Google Scholar 

  • Lo HW et al (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67(19):9066–9076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Brooks M, Wicha MS (2015) Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr Pharm Des 21(10):1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M et al (2018) Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab 28(1):69–86 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maetzel D et al (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11(2):162–171

    Article  CAS  PubMed  Google Scholar 

  • Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59(1):168–179

    Article  CAS  PubMed  Google Scholar 

  • McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628

    Article  CAS  PubMed  Google Scholar 

  • Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Mimeault M, Batra SK (2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 17(1):30–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreb JS et al (2012) The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact 195(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Morris RJ et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22(4):411–417

    Article  CAS  PubMed  Google Scholar 

  • Muntimadugu E et al (2016) CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 143:532–546

    Article  CAS  PubMed  Google Scholar 

  • Munz M et al (2004) The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23(34):5748–5758

    Article  PubMed  CAS  Google Scholar 

  • Nakaya Y, Sheng G (2013) EMT in developmental morphogenesis. Cancer Lett 341(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Oakes SR et al (2008) The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 22(5):581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osta WA et al (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64(16):5818–5824

    Article  CAS  PubMed  Google Scholar 

  • Pallafacchina G et al (2010) An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res 4(2):77–91

    Article  CAS  PubMed  Google Scholar 

  • Paredes J et al (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11(16):5869–5877

    Article  CAS  PubMed  Google Scholar 

  • Patel SA et al (2012) Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Sci Rep 2:906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120(1):60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pera MF, Tam PP (2010) Extrinsic regulation of pluripotent stem cells. Nature 465(7299):713–720

    Article  CAS  PubMed  Google Scholar 

  • Pham PV et al (2011) Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 9:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Article  PubMed  Google Scholar 

  • Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prat A et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radisky D, Muschler J, Bissell MJ (2002) Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Investig 20(1):139–153

    Article  Google Scholar 

  • Raimondi C et al (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130(2):449–455

    Article  CAS  PubMed  Google Scholar 

  • Rebucci M, Michiels C (2013) Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 85(9):1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Reka AK et al (2011) Identifying inhibitors of epithelial-mesenchymal transition by connectivity map-based systems approach. J Thorac Oncol 6(11):1784–1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro AS, Paredes J (2014) P-cadherin linking breast Cancer stem cells and invasion: a promising marker to identify an “intermediate/metastable” EMT state. Front Oncol 4:371

    Article  PubMed  Google Scholar 

  • Ribeiro AS et al (2010) Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 29(3):392–402

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AS et al (2013) P-cadherin functional role is dependent on E-cadherin cellular context: a proof of concept using the breast cancer model. J Pathol 229(5):705–718

    Article  CAS  PubMed  Google Scholar 

  • Roy SS et al (2014) Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene 33(28):3707–3716

    Article  CAS  PubMed  Google Scholar 

  • Sansone P et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schabath H et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    Article  CAS  PubMed  Google Scholar 

  • Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senbanjo LT, Chellaiah MA (2017) CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Servick K (2014) Breast cancer. Breast cancer: a world of differences. Science 343(6178):1452–1453

    Article  PubMed  Google Scholar 

  • Shafee N et al (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68(9):3243–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan C et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibue T, Weinberg RA (2017) EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 14(10):611–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Shipitsin M et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11(3):259–273

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  • Sigurdsson V et al (2011) Endothelial induced EMT in breast epithelial cells with stem cell properties. PLoS One 6(9):e23833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder V et al (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa B et al (2014) The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer 14:734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanei T et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12):4234–4241

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  PubMed  Google Scholar 

  • Thomson S et al (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65(20):9455–9462

    Article  CAS  PubMed  Google Scholar 

  • Tierney MT et al (2016) Autonomous extracellular matrix remodeling controls a progressive adaptation in muscle stem cell regenerative capacity during development. Cell Rep 14(8):1940–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita H et al (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7(10):11018–11032

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran HD et al (2014) Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 74(21):6330–6340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27(20):2192–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco-Velazquez MA et al (2011) The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 179(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viebahn C, Lane EB, Ramaekers FC (1995) Cytoskeleton gradients in three dimensions during neurulation in the rabbit. J Comp Neurol 363(2):235–248

    Article  CAS  PubMed  Google Scholar 

  • Vieira AF et al (2012) P-cadherin is coexpressed with CD44 and CD49f and mediates stem cell properties in basal-like breast cancer. Stem Cells 30(5):854–864

    Article  CAS  PubMed  Google Scholar 

  • Vieira AF et al (2014) P-cadherin signals through the laminin receptor alpha6beta4 integrin to induce stem cell and invasive properties in basal-like breast cancer cells. Oncotarget 5(3):679–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira AF et al (2017) P-cadherin: a useful biomarker for axillary-based breast cancer decisions in the clinical practice. Mod Pathol 30(5):698–709

    Article  CAS  PubMed  Google Scholar 

  • Visvader JE (2009) Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23(22):2563–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B et al (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K et al (2014) Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 29(1):59–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson MA et al (2007) Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res 13(17):5001–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt FM, Fujiwara H (2011) Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 3(4):a005124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woodward WA et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104(2):618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25(11):675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X et al (2017) Upholding a role for EMT in breast cancer metastasis. Nature 547(7661):E1–E3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH et al (2013) Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154(5):1060–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielske SP et al (2011) Ablation of breast cancer stem cells with radiation. Transl Oncol 4(4):227–233

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Acknowledgements should be given to FEDER—Fundo Europeu de Desenvolvimento Regional through the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by FCT- Fundação para a Ciência e a Tecnologia, under the project POCI-01-0145-FEDER-016390. IPATIMUP integrates the i3S Research Unit, which is partially supported by FCT in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Paredes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sousa, B., Ribeiro, A.S., Paredes, J. (2019). Heterogeneity and Plasticity of Breast Cancer Stem Cells. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Cancer. Advances in Experimental Medicine and Biology, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-14366-4_5

Download citation

Publish with us

Policies and ethics