Skip to main content

Functional Tricuspid Regurgitation

  • Chapter
  • First Online:
Textbook of Three-Dimensional Echocardiography

Abstract

Functional tricuspid regurgitation (FTR) is an important prognosticator in many cardiac diseases. Although surgical intervention has been being frequently applied, the success of current repair techniques is often uncertain and observation of residual or progressive FTR after tricuspid valve annuloplasty is not uncommon. Standard views obtained with two-dimensional transthoracic echocardiography, due to its inherent limitations, failed to evaluate geometric changes associated with FTR accurately. Transthoracic three-dimensional echocardiography (3DE) has revolutionized our approach for better understanding the 3D geometry of the tricuspid annulus both in normal subjects and in patients with FTR. The tricuspid annulus was found to be a non-planar structure with a distinct bimodal or saddle-shaped pattern like the mitral annulus, whereas, in patients with FTR, the annular area was larger and the annulus was flatter with markedly decreased annular height, which diminished the saddle shape. Potential contribution of right ventricular or right atrial geometric changes to the tricuspid annulus remodeling in FTR can also be evaluated using transthoracic 3DE data sets. 3DE, performed before and after the tricuspid annuloplasty, can provide an excellent opportunity to evaluate geometric changes associated with persistent or progressive FTR after the tricuspid annuloplasty. The current surgical approach can achieve tricuspid annulus size reduction at the expense of aggravation of leaflet tenting, which can explain suboptimal surgical results. 3DE color Doppler images can be adequately used for cross-sectional images of the vena contracta using multiplanar reconstruction images, which is useful to assess the severity of FTR. Thus, comprehensive and accurate evaluation of FTR is possible using 3DE and its impact to improve clinical outcome should be further tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badano LP, Muraru D, Enriquez-Sarano M. Assessment of functional tricuspid regurgitation. Eur Heart J. 2013;34(25):1875–85.

    Article  Google Scholar 

  2. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.

    Article  Google Scholar 

  3. Calafiore AM, Gallina S, Iaco AL, et al. Mitral valve surgery for functional mitral regurgitation: should moderate-or-more tricuspid regurgitation be treated? a propensity score analysis. Ann Thorac Surg. 2009;87:698–703.

    Article  Google Scholar 

  4. Varadarajan P, Pai RG. Prognostic implications of tricuspid regurgitation in patients with severe aortic regurgitation: results from a cohort of 756 patients. Interact Cardiovasc Thorac Surg. 2012;14:580–4.

    Article  Google Scholar 

  5. Mascherbauer J, Kammerlander AA, Marzluf BA, Graf A, Kocher A, Bonderman D. Prognostic impact of tricuspid regurgitation in patients undergoing aortic valve surgery for aortic stenosis. PLoS One. 2015;10:e0136024.

    Article  Google Scholar 

  6. Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79:127–32.

    Article  Google Scholar 

  7. McCarthy PM, Sales VL. Evolving indications for tricuspid valve surgery. Curr Treat Options Cardiovasc Med. 2010;12:587–97.

    Article  Google Scholar 

  8. Bernal JM, Gutierrez-Morlote J, Llorca J, San Jose JM, Morales D, Revuelta JM. Tricuspid valve repair: an old disease, a modern experience. Ann Thorac Surg. 2004;78:2069–74.

    Article  Google Scholar 

  9. McCarthy PM, Bhudia SK, Rajeswaran J, et al. Tricuspid valve repair:durability and risk factors for failure. J Thorac Cardiovasc Surg. 2004;127:674–85.

    Article  Google Scholar 

  10. Fukuda S, Song JM, Gillinov AM, et al. Tricuspid valve tethering predicts residual tricuspid regurgitation after tricuspid annuloplasty. Circulation. 2005;111:975–9.

    Article  Google Scholar 

  11. Muraru D, Hahn RT, Soliman IA, Faletra F, Basso C, Badano LP. Three-dimensional echocardiography in imaging the tricuspid valve. JACC Cardiovasc Imaging. 2019;12:500–15.

    Google Scholar 

  12. Muraru D, Surkova E, Badano LP. Revisit of functional tricuspid regurgitation; current trends in the diagnosis and management. Korean Circ J. 2016;46:443–55.

    Article  Google Scholar 

  13. Badano LP, Agricola E, Perez de Isla L, Gianfagna P, Zamorano JL. Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10:477–84.

    Article  Google Scholar 

  14. Spinner EM, Shannon P, Buice D, et al. In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation. Circulation. 2011;124:920–9.

    Article  Google Scholar 

  15. Nemoto N, Lesser JR, Pedersen WR, et al. Pathogenic structural heart changes in early tricuspid regurgitation. J Thorac Cardiovasc Surg. 2015;150:323–30.

    Article  Google Scholar 

  16. Mutlak D, Lessick J, Reisner SA, Aronson D, Dabbah S, Agmon Y. Echocardiography-based spectrum of severe tricuspid regurgitation: the frequency of apparently idiopathic tricuspid regurgitation. J Am Soc Echocardiogr. 2007;20:405–8.

    Article  Google Scholar 

  17. Najib MQ, Vinales KL, Vittala SS, Challa S, Lee HR, Chaliki HP. Predictors for the development of severe tricuspid regurgitation with anatomically normal valve in patients with atrial fibrillation. Echocardiography. 2012;29:140–6.

    Article  Google Scholar 

  18. Utsunomiya H, Itabashi Y, Mihara H, et al. Functional tricuspid regurgitation caused by chronic atrial fibrillation: a real-time 3-dimensional transesophageal echocardiography study. Circ Cardiovasc Imaging. 2017;10(1). pii: e004897.

    Google Scholar 

  19. Prihadi EA, Delgado V, Hahn RT, Leipsic J, Min JK, Bax JJ. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc Imaging. 2018;11:736–54.

    Article  Google Scholar 

  20. Afilalo J, Grapsa J, Nihoyannopoulos P, et al. Leaflet area as a determinant of tricuspid regurgitation severity in patients with pulmonary hypertension. Circ Cardiovasc Imaging. 2015;8(5). pii: e002714.

    Google Scholar 

  21. Kim H, Kim IC, Yoon HJ, et al. Prognostic usefulness of tricuspid annular diameter for cardiovascular events in patients with tricuspid regurgitation of moderate to severe degree. Am J Cardiol. 2018;121:1343–50.

    Article  Google Scholar 

  22. Fukuda S, Gillinov AM, Song JM, et al. Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation. Am Heart J. 2006;152:1208–14.

    Article  Google Scholar 

  23. Topilsky Y, Khanna A, Le Tourneau T, et al. Clinical context and mechanism of functional tricuspid regurgitation in patients with and without pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:314–23.

    Article  Google Scholar 

  24. Song JM, Jang MK, Kim YJ, Kim DH, Kang DH, Song JK. Right ventricular remodeling determines tricuspid valve geometry and the severity of functional tricuspid regurgitation: a real-time 3-dimensional echocardiography study. Korean Circ J. 2010;40:448–53.

    Article  Google Scholar 

  25. Rogers JH, Bolling SF. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation. 2009;119:2718–25.

    Article  Google Scholar 

  26. Sukmawan R, Watanabe N, Ogasawara Y, et al. Geometric changes of tricuspid valve tenting in tricuspid regurgitation secondary to pulmonary hypertension quantified by novel system with transthoracic real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2007;20:470–6.

    Article  Google Scholar 

  27. Park YH, Song JM, Lee EY, Kim YJ, Kang DH, Song JK. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol. 2008;124:160–5.

    Article  Google Scholar 

  28. Dreyfus GD, Martin RP, Chan KM, Dulguerov F, Alexandrescu C. Functional tricuspid regurgitation: a need to revise our understanding. J Am Coll Cardiol. 2015;65:2331–6.

    Article  Google Scholar 

  29. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:e57–185.

    Article  Google Scholar 

  30. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS guidelines for the management of valvular heart diseases. Eur Heart J. 2017;38(36):2739–91.

    Article  Google Scholar 

  31. Ton-Nu TT, Levine RA, Handschumacher MD, et al. Geometric determinants of functional tricuspid regurgitation:insights from 3-dimensional echocardiography. Circulation. 2006;114:143–9.

    Article  Google Scholar 

  32. Fukuda S, Saracino G, Matsumura Y, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation. 2006;114:I492–8.

    PubMed  Google Scholar 

  33. Dreyfus J, Durand-Viel G, Raffoul R, et al. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circ Cardiovasc Imaging. 2015;8:e003241.

    Article  Google Scholar 

  34. Stankovic I, Daraban AM, Jasaityte R, Neskovic AN, Claus P, Voigt JU. Incremental value of the en face view of the tricuspid valve by two-dimensional and three-dimensional echocardiography for accurate identification of tricuspid valve leaflets. J Am Soc Echocardiogr. 2014;27:376–84.

    Article  Google Scholar 

  35. Anwar AM, Geleijnse ML, Ten Cate FJ, Meijboom FJ. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg. 2006;5:683–7.

    Article  Google Scholar 

  36. Anwar AM, Soliman OI, Nemes A, van Geuns RJ, Geleijnse ML, Ten Cate FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007;23:701–5.

    Article  Google Scholar 

  37. Spinner EM, Lerakis S, Higginson J, et al. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circ Cardiovasc Imaging. 2012;5:43–50.

    Article  Google Scholar 

  38. van Rosendael PJ, Joyce E, Katsanos S, et al. Tricuspid valve remodelling in functional tricuspid regurgitation: multidetector row computed tomography insights. Eur Heart J Cardiovasc Imaging. 2016;17:96–105.

    PubMed  Google Scholar 

  39. Takaoka H, Funabashi N, Kataoka A, et al. Utilities of 320-slice computed-tomography for evaluation of tricuspid valve annular diameter before tricuspid-valve-plasty compared with the direct-measurement of tricuspid valve annular diameter during open heart-surgery. Int J Cardiol. 2013;168:2889–93.

    Article  Google Scholar 

  40. Kabasawa M, Kohno H, Ishizaka T, et al. Assessment of functional tricuspid regurgitation using 320-detector-row multislice computed tomography: risk factor analysis for recurrent regurgitation after tricuspid annuloplasty. J Thorac Cardiovasc Surg. 2014;147:312–20.

    Article  Google Scholar 

  41. Maffessanti F, Gripari P, Pontone G, et al. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14:986–95.

    Article  Google Scholar 

  42. Tei C, Pilgrim JP, Shah PM, Ormiston JA, Wong M. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation. 1982;66:665–71.

    Article  CAS  Google Scholar 

  43. Addetia K, Muraru D, Veronesi F, et al. 3-Dimensional Echocardiographic Analysis of the Tricuspid Annulus Provides New Insights Into Tricuspid Valve Geometry and Dynamics. JACC Cardiovasc Imaging. 2017;10. pii: S1936-878X(17)30902-6.

    Google Scholar 

  44. Miglioranza MH, Mihaila S, Muraru D, Cucchini U, Iliceto S, Badano LP. Variability of tricuspid annulus diameter measurement in healthy volunteers. JACC Cardiovasc Imaging. 2015;8:864–6.

    Article  Google Scholar 

  45. Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS), Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.

    Article  Google Scholar 

  46. Miglioranza MH, Mihaila S, Muraru D, Cucchini U, Iliceto S, Badano LP. Dynamic changes in tricuspid annular diameter measurement in relation to the echocardiographic view and timing during the cardiac cycle. J Am Soc Echocardiogr. 2015;28:226–35.

    Article  Google Scholar 

  47. Lancellotti P, Moura L, Pierard LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.

    Article  Google Scholar 

  48. Min SY, Song JM, Kim JH, et al. Geometric changes after tricuspid annuloplasty and predictors of residual tricuspid regurgitation: a real-time three-dimensional echocardiography study. Eur Heart J. 2010;31:2871–80.

    Article  Google Scholar 

  49. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303–71.

    Article  Google Scholar 

  50. Tribouilloy C, Enriquez-Sarano M, Bailey K, Tajik A, Seward J. Quantification of tricuspid regurgitation by measuring the width of the vena contracta with Doppler color flow imaging: a clinical study. J Am Coll Cardiol. 2000;36:472–8.

    Article  CAS  Google Scholar 

  51. Velayudhan DE, Brown TM, Nanda NC, et al. Quantification of tricuspid regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2006;23:793–800.

    Article  Google Scholar 

  52. Chen TE, Kwon SH, Enriquez-Sarano M, Wong BF, Mankad SV. Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures. J Am Soc Echocardiogr. 2013;26:1143–52.

    Article  Google Scholar 

  53. Hahn RT, Thomas JD, Khalique OK, Cavalcante JL, Praz F, Zoghbi WA. Imaging assessment of tricuspid regurgitation severity. JACC Cardiovasc Imaging. 2019;12:469–90.

    PubMed  Google Scholar 

  54. Rivera JM, Vandervoort PM, Mele D, et al. Quantification of tricuspid regurgitation by means of the proximal flow convergence method: a clinical study. Am Heart J. 1994;127:1354–62.

    Article  CAS  Google Scholar 

  55. Cawley PJ, Hamilton-Craig C, Owens DS, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6:48–57.

    Article  Google Scholar 

  56. Hahn RT, Zamorano JL. The need for a new tricuspid regurgitation grading scheme. Eur Heart J Cardiovasc Imaging. 2017;18:1342–3.

    Article  Google Scholar 

  57. Topilsky Y, Tribouilloy C, Michelena HI, Pislaru S, Mahoney DW, Enriquez-Sarano M. Pathophysiology of tricuspid regurgitation. Quantitative Doppler echocardiographic assessment of respiratory dependence. Circulation. 2010;122:1505–13.

    Article  Google Scholar 

  58. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    Article  Google Scholar 

  59. Mutlak D, Carasso S, Lessick J, Aronson D, Reisner SA, Agmon Y. Excessive respiratory variation in tricuspid regurgitation systolic velocities in patients with severe tricuspid regurgitation. Eur Heart J Cardiovasc Imaging. 2013;14:957–62.

    Article  Google Scholar 

  60. Mutlak D, Aronson D, Lessick J, Reisner SA, Dabbah S, Agmon Y. Functional tricuspid regurgitation in patients with pulmonary hypetension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest. 2009;135:115–21.

    Article  Google Scholar 

  61. Song JM, Jang MK, Choi YS, et al. The vena contracta in functional tricuspid regurgitation: a real-time three-dimensional color Doppler echocardiography study. J Am Soc Echocardiogr. 2011;24:663–70.

    Article  Google Scholar 

  62. Francis DP, Willson K, Ceri Davies L, Florea VG, Coats AJ, Gibson DG. True shape and area of proximal isovelocity surface area (PISA) when flow convergence is hemispherical in valvular regurgitation. Int J Cardiol. 2000;73:237–42.

    Article  CAS  Google Scholar 

  63. Moraldo M, Cecaro F, Shun-Shin M, et al. Evidence-based recommendations for PISA measurements in mitral regurgitation: systematic review, clinical and in-vitro study. Int J Cardiol. 2013;168:1220–8.

    Article  Google Scholar 

  64. de Agustin JA, Viliani D, Vieira C, et al. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. J Am Soc Echocardiogr. 2013;26:1063–72.

    Article  Google Scholar 

  65. Thavendiranathan P, Liu S, Datta S, et al. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging. 2013;6:125–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Kwan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, JK., Muraru, D., Guta, AC., Badano, L.P. (2019). Functional Tricuspid Regurgitation. In: Badano, L., Lang, R., Muraru, D. (eds) Textbook of Three-Dimensional Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-030-14032-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14032-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14030-4

  • Online ISBN: 978-3-030-14032-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics