Skip to main content

Phycoremediation of Persistent Organic Pollutants from Wastewater: Retrospect and Prospects

  • Chapter
  • First Online:
Book cover Application of Microalgae in Wastewater Treatment

Abstract

Persistent organic pollutants (POPs) are the most widespread pollutants having toxicity, mutagenicity, and carcinogenicity. Countless amounts of POPs are introduced into our environment as an outcome of myriads of anthropogenic activities. Pollution caused by POPs is a severe problem throughout the world. To solve the problem, extensive research efforts have been focused worldwide to implement sustainable technologies for the treatment of POPs present in the environment. There are various chemical and biological remediation methods which are well documented and are in practice for removal of diverse forms of POPs from soil and aquatic system. Microbial remediation process is an economical way to remediate POPs as compared to the chemical process and has been studied well over a period of more than three decades. Recently, interest has gathered in phycoremediation of POPs into harmless organic pollutants, which are adaptive, ubiquitous, and thriving in different ecosystems. The objective of this chapter is to review and discuss the bioremediating and biodegradative competencies of microalgae on persistent organic pollutants, viz., PAHs, PCBs, pesticides, OCPs, phenolics, PHCs, and antibiotics. This chapter will concisely incorporate studies which have examined and scrutinized the oxidation, transformation, and accumulation of these compounds by algal species. A detailed analysis of the molecular mechanisms involved in bioremediation and biotransformation of POPs has also been reviewed. the limitations and various approaches to enhance phycoremediation and its perspective are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-DNP:

2,4-dinitrophenol

ARISA:

Automated ribosomal intergenic spacer analysis

B[k]F:

Benzo[k] fluoranthene

BaA:

Benzo[a] anthracene

BaF:

Benzo[b] fluoranthene

BGA:

Blue-green algae

BghiP:

Benzo[g,h,i] erylene

BPA:

Bisphenol A

DDT:

Dichlorodiphenyltrichloroethane

DGEG:

Denaturing gradient gel electrophoresis

DNA:

Deoxyribonucleic acid

EDCs:

Endocrine disruptors

EE2:

17-α- Ethinylestradiol

FISH:

Fluorescent in situ hybridization

Fla.:

Fluoranthene

HAB:

Harmful algal bloom

HMW-PAH:

High molecular weight polycyclic aromatic hydrocarbon

LH-PCR:

Length Heterogeneity Polymerase Chain Reaction

LMW-PAH:

Low molecular weight polycyclic aromatic hydrocarbon

LTRR:

Long tandemly repeated repetitive

OC:

Organochlorine

OP:

4-Octylphenol

PAH:

Polycyclic aromatic hydrocarbon

PCB:

Polychlorinated biphenyls

PCR:

Polymerase chain reaction

PHC:

Petroleum hydrocarbon

Phe:

Phenanthrene

PNP:

Poly-nitrophenol

POP:

Persistent organic pollutants

PS I, II:

Photosystem I, II

Pyr:

Pyrene

RAPD:

Random Amplification of Polymorphic DNA

RFLP:

Restriction Fragment Length Polymorphism

RNA:

Ribonucleic acid

SSCP:

Single-strand conformation polymorphism

STRR:

Short tandemly repeated repetitive

References

  • Abou-Shanab RAI (2011) Bioremediation: new approaches and trends. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils, vol 20., Environmental pollution. Springer, Dordrecht

    Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Google Scholar 

  • Andrate MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134

    Google Scholar 

  • Aoki Y (2001) Polychlorinated biphenyls, polychloronated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters—what we have learned from Yusho disease. Environ Res 86(1):2–11

    CAS  Google Scholar 

  • Arienzo M, Masuccio AA, Ferrara L (2013) Evaluation of sediment contamination by heavy metals, organochlorinated pesticides, and polycyclic aromatic hydrocarbons in the Berre coastal lagoon (Southeast France). Arch Environ Contam Toxicol 65(3):396–406

    CAS  Google Scholar 

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333(1–3):167–184

    CAS  Google Scholar 

  • Bachmann R, Johnson A, Edyvean R (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation 86:225–237

    CAS  Google Scholar 

  • Bahadar H, Mostafalou S, Abdollahi M (2014) Current understandings and perspectives on non-cancer health effects of benzene: a global concern. Toxicol Appl Pharmacol 276(2):83–94

    CAS  Google Scholar 

  • Baker JA, Entsch B, Neilan BA, McKay DB (2002) Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl Environ Microbiol 68(12):6070–6076

    CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80(7):723–736

    CAS  Google Scholar 

  • Barton JW, Kuritz T, O’Connor LE, Ma CY, Maskarinec MP, Davison BH (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65(3):330–335

    CAS  Google Scholar 

  • Ben Chekroun K, Moumen A, Rezzoum N, Sanchez E, Baghour M (2013) Role of macroalgae in biomonitoring of pollution in ‘Marchica’, the Nador lagoon. Phyton 82:31–34

    Google Scholar 

  • Bergman B, Matveyev A, Rasmussen U (1996) Chemical signalling in cyanobacterial-plant symbioses. Trends Plant Sci 1(6):191–197

    Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-response surface methodology analysis. Energy Convers Manag 50(2):262–267

    CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) 2015. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21

    CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5(12):1110–1116

    CAS  Google Scholar 

  • Boxall ABA, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT, Beazley KF, Belanger SE, Berninger JP, Carriquiriborde P, Coors A, DeLeo PC, Dyer SD, Ericson JF, Gagné F, Giesy JP, Gouin T, Hallstrom L, Karlsson MV, Larsson DGJ, Lazorchak JM, Mastrocco F, McLaughlin A, McMaster ME, Meyerhoff RD, Moore R, Parrott JL, Snape JR, Murray-Smith R, Servos MR, Sibley PK, Straub JO, Szabo ND, Topp E, Tetreault GR, Trudeau VL, Van Der Kraak G (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Google Scholar 

  • Cáceres T, Megharaj M, Naidu R (2008) Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Sci Total Environ 398:53–59

    Google Scholar 

  • Castiglioni B, Rizzi E, Frosini A, Sivonen K, Rajaniemi P, Rantala A, Mugnai MA, Ventura S, Wilmotte A, Boutte C, Grubisic S, Balthasart P, Consolandi C, Bordoni R, Mezzelani A, Battaglia C, De Bellis G (2004) Development of a universal microarray based on the ligation detection reaction and 16S rrna gene polymorphism to target diversity of cyanobacteria. Appl Environ Microbiol 70(12):7161–7172

    CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Cerniglia CE, van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, van Baalen C (1982) Naphthalene metabolism by diatoms from the Kachemak Bay region of Alaska. J Gen Microbiol 128:987–990

    CAS  Google Scholar 

  • Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779

    CAS  Google Scholar 

  • Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:249–306

    Google Scholar 

  • Couto RM, Simões PC, Reis A, Da Silva TL, Martins VH, Sánchez-Vicente Y (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodiniumcohnii. Eng Life Sci 10:158–164

    CAS  Google Scholar 

  • Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GA, Guillette LJ (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 24:225–239

    CAS  Google Scholar 

  • Crinnion W (2011) Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Environ Med 16(1):5–13

    Google Scholar 

  • de Llasera MPG, de Jesús Olmos-Espejel J, Díaz-Flores G, Montaño-Montiel A (2016) Biodegradation of benzo (a) pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: a comparative study useful for bioremediation. Environ Sci Pollut Res 23:3365–3375

    Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In: Atman A, Hasegawa PM (eds) Plant biotechnology and agriculture, prospects for the 21st century. Academic Press, Oxford, U.K, pp 309–328

    Google Scholar 

  • Dias E, Oliveira M, Jones-Dias D, Vasconcelos V, Ferreira E, Manageiro V, Caniça M (2015) Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front Microbiol 6:799

    Google Scholar 

  • Ding T, Lin K, Yang B, Yang M, Li J, Li W, Gan J (2017) Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour Technol 238:164–173

    CAS  Google Scholar 

  • Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123

    CAS  Google Scholar 

  • Droop MR (1974) The nutrient status of algal cells in continuous culture. J Mar Biol Assoc UK 54:825–855

    CAS  Google Scholar 

  • Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439(7072):68–71

    CAS  Google Scholar 

  • Dziallas C, Grossart H-P (2011) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13(6):1632–1641

    Google Scholar 

  • El-Sheekh MM, Ghareib MM, EL-Souod GWA (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3:133

    CAS  Google Scholar 

  • Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the Phosphonate herbicide glyphosate. Plant Cell Physiol 49(3):443–456

    CAS  Google Scholar 

  • Friesen-Pankratz B, Doebel C, Farenhorst A, Goldsborough LG (2003) Influence of algae (Selenastrum capricornutum) on the aqueous persistence of atrazine and lindane: implications for managing constructed wetlands for pesticide removal. J Environ Sci Heal B B38:147–155

    CAS  Google Scholar 

  • Gamila HA, Ibrahim MBM (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil:1-isolated strains. Bull Environ Contam Toxicol 723:883–889

    Google Scholar 

  • Gascon M, Morales E, Sunyer J, Vrijheid M (2013) Effects of persistent organic pollutants on the developing respiratory and immune systems: a systematic review. Environ Int 52:51–65

    CAS  Google Scholar 

  • Gattullo CE, Bahrs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    CAS  Google Scholar 

  • Ge L, Deng H (2015) Degradation of two fluoroquinolone antibiotics photoinduced by Fe(III)-microalgae suspension in an aqueous solution. Photochem Photobiol Sci 14(4):693–699

    CAS  Google Scholar 

  • González R, García-Balboa C, Rouco M, Lopez-Rodas V, Costas E (2012) Adaptation of microalgae to lindane: a new approach for bioremediation. Aquat Toxic 109:25–32

    Google Scholar 

  • Greenberg MM (1997) The central nervous system and exposure to toluene: a risk characterization. Environ Res 72(1):1–7

    CAS  Google Scholar 

  • Guo XW, Liu KY, He S, Hu HJ, Xu TW (2012) Petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin, China: insight from integrated fluid inclusion analysis and basin modeling. Mar Pet Geol 32(1):21–35

    Google Scholar 

  • Guo J, Selby K, Boxall ABA (2016) Effects of antibiotics on the growth and physiology of chlorophytes, cyanobacteria, and a diatom. Arch Environ Contam Toxicol 71(4):589–602

    CAS  Google Scholar 

  • Harding LW, Phillips JH (1978) Polychlorinated Biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49:103–111

    CAS  Google Scholar 

  • Headley JV, Du JL, Peru KM, Gurprasa N, McMartin DW (2008) Evaluation of algal phytodegradation of petroleum naphthenic acids. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:227–232

    CAS  Google Scholar 

  • Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95:200–203

    CAS  Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (cyanobacteria) state in 2004. Algol Stud/Archiv Hydrobiol Supplement Volumes 117:95–115

    Google Scholar 

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405

    CAS  Google Scholar 

  • Hong SH, Shim WJ, Han GM, Ha SY, Jang M, Rani M, Hong S, Yeo GY (2014) Levels and profiles of persistent organic pollutants in resident and migratory birds from an urbanized coastal region of South Korea. Sci Total Environ 470–471:1463–1470

    Google Scholar 

  • Huang H, Marsh-Armstrong N, Brown DD (1999) Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase. Proc Natl Acad Sci U S A 296(3):962–967

    Google Scholar 

  • Humbert JF, Quiblier C, Gugger M (2010) Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal Bioanal Chem 397(5):1723–1732

    CAS  Google Scholar 

  • Hussain J, Zhao Z, Pang Y, Xia L, Hussain I, Jiang X (2016) Effects of different water seasons on the residual characteristics and ecological risk of polycyclic aromatic hydrocarbons in sediments from Changdang Lake, China. J Chem 2016:1–10

    Google Scholar 

  • Hussein IAS, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, the effect on human health and remediation. Egyp J Petro 25:107–123

    Google Scholar 

  • Hussein MH, Abdullah AM, Badr El-Din NI, Mishaqa ESI (2017) Biosorption potential of the microchlorophyte chlorella vulgaris for some pesticides. J Fertil Pestic 08:01

    Google Scholar 

  • Ibrahim MBM, Gamila HA (2004) Algal bioassay for evaluating the role of algae in bioremediation of crude oil: II. freshwater phytoplankton assemblages. Bull Environ Contam Toxicol 73:971–978

    CAS  Google Scholar 

  • Ishak S, Malakahmad A, Isa MH (2012) Refinery wastewater biological treatment: a short review. J Sci Ind Res 71:251–256

    CAS  Google Scholar 

  • Ji PH, Song YF, Sun TH, Liu Y, Cao XF, Xu D, Yang XX, McRae T (2011) In-situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trial. Int. J Phytorem 13(10):1014–1023

    CAS  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284

    CAS  Google Scholar 

  • Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology 27:361–372

    CAS  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    CAS  Google Scholar 

  • Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci 106(27):11177

    CAS  Google Scholar 

  • Joseph V, Joseph A (2001) Microalgae in petrochemical effluent: growth and biosorption of total dissolved solids. Bull Environ Contam Toxicol 66:522–527

    CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Google Scholar 

  • Jurewicz J, Hanke W (2008) Prenatal and childhood exposure to pesticides and neurobehavioral development: a review of epidemiological studies. Int J Occup Med Environ Health 21(2):121–132

    Google Scholar 

  • Kirso U, Irha N (1998) Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment. Ecotox Environ Safety 41(1):83–89

    CAS  Google Scholar 

  • Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13:493–501

    CAS  Google Scholar 

  • Kneifel H, Kerstin E, Eberhard H, Carl JS (1997) Biotransformation of 1-naphthalene sulfonic acid by the green alga Scenedesmus obliquus. Arch Microbiol 167:32–37

    CAS  Google Scholar 

  • Kobayashi H, Rittman BE (1982) Microbial removal of hazardous organic compounds. Environ Sci Technol 16:170–183

    Google Scholar 

  • Komárek J (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur J Phycol 51(3):346–353

    Google Scholar 

  • Kraut A, Lilis R, Marcus M, Valciukas JA, Wolff MS, Landrigan PJ (1988) Neurotoxic effects of solvent exposure on sewage treatment workers. Arch Environ Health 43(1):263–268

    CAS  Google Scholar 

  • Kurade MB, Kim JR, Govindwar SP, Jeon BH (2016) Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res 20:126–134

    Google Scholar 

  • Kuritz T, Bocanera LV, Rivera NS (1997) Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the air operon. J Bacteriol 179:3368–3370

    CAS  Google Scholar 

  • Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria Appl Microbiol Biotechnol. 58(2):123–137

    Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    CAS  Google Scholar 

  • Lara RJ, Wiencke C, Ernst W (1989) Association between exudates of Brown algae andpolychlorinated biphenyls. J Appl Phycol 1:267–270

    Google Scholar 

  • Lauze JF, Hable WE (2017) Impaired growth and reproductive capacity in marine rockweeds following prolonged environmental contaminant exposure. Bot Mar 60:137–148

    CAS  Google Scholar 

  • Lei A, Wong Y, Tam N (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201

    CAS  Google Scholar 

  • Leston S, Nunes M, Viegas I, Ramos F, Pardal MA (2013) The effects of chloramphenicol on Ulva lactuca. Chemosphere 91:552–557

    CAS  Google Scholar 

  • Levy G, Lutz I, Kruger A, Kloas W (2004) Bisphenol a induces feminization in Xenopus laevis tadpoles. Environ Res 94:102–111

    CAS  Google Scholar 

  • Li H, Pan Y, Wang Z, Chen S, Guo R, Chen J (2015) An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv 5(122):100775–100782

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    CAS  Google Scholar 

  • Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146

    CAS  Google Scholar 

  • Lima SAC, Castro PML, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15:137–142

    CAS  Google Scholar 

  • Lima SAC, Raposo MFJ, Castro PML, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38:97–102

    CAS  Google Scholar 

  • Lin TS, Wu JY (2015) Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol 184:100–107

    CAS  Google Scholar 

  • Lindquist B, Warshawsky D (1985) Identi¢cation of the 11,12-dihydro-11,12-dihydroxybenzo(a)pyrene as a major metabolite by the green alga, Selenastrum capricornutum. Biochem Biophys Res Commun 130:71–75

    CAS  Google Scholar 

  • Lipok J, Studnik H, Gruyaert S (2010) The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73(7):1681–1688

    CAS  Google Scholar 

  • Ljunggren SA, Helmfrid I, Salihovic S, van Bavel B, Wingren G, Lindahl M, Karlsson H (2014) Persistent organic pollutants distribution in lipoprotein fractions in relation to cardiovascular disease and cancer. Environ Int 65:93–99

    CAS  Google Scholar 

  • Lynn SG, Price DJ, Birge WJ, Kilham SS (2007) Effect of nutrient availability on the uptake of PCB congener 2,20,6,60-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquat Toxicol 83:24–32

    CAS  Google Scholar 

  • Mahdavi H, Prasad V, Liu Y, Ulrich AC (2015) In situ biodegradation of naphthenic acids in oil sands, tailings pond water using indigenous algae–bacteria consortium. Bioresour Technol 187:97–105

    CAS  Google Scholar 

  • Majewski MS, Capel PD (1995) Pesticides in the atmosphere; distribution, trends, and governing factors. Report:94–506. Online: http://pubs.er.usgs.gov/publication/ofr94506

  • Megharaj M, Venkateswarlu K, Rao AS (1988) Influence of glucose amendment on the algal toxicity of nitrophenols. Ecotoxicol Environ Saf 15:320–323

    CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:2

    Google Scholar 

  • MistraPharma (2011) Collaborating to reduce the environmental risks of pharmaceuticals. MistraPharma researchers and stakeholders. MistraPharma, Stockholm

    Google Scholar 

  • Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam Toxicol 202:53–154

    CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267

    Google Scholar 

  • Montero-Rodríguez D, Andrade RFS, Ribeiro DLR, Rubio-Ribeaux D, Lima RA, Araújo HWC, Campos-Takaki GM (2015) Bioremediation of Petroleum Derivative Using Biosurfactant Produced by Serratia marcescens UCP/WFCC 1549 in Low-Cost Medium. Int J Curr Microbiol App Sci 4(7):550–562

    Google Scholar 

  • Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992a) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Envron Microbiol 58:1360–1363

    CAS  Google Scholar 

  • Narro ML, Cerniglia CE, Baalen CV, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadrulicatum PR-6. Appl Environ Microbiol 58:1351–1359

    CAS  Google Scholar 

  • Naturvårdsverket (2008) Avloppsreningsverkens förmåga att ta hand om läkemedelsrester och andra farliga ämnen. Report 5794 http://www.naturvardsverket.se/Documents/publikationer/620-5794-7.pdf

  • Navarro AE, Portales RF, Sun-Kou MR, Llanos BP (2008) Effect of pH on phenol biosorption by marine seaweeds. J Hazard Mater 156:405–411

    CAS  Google Scholar 

  • Net S, Henry F, Rabodonirina S, Diop M, Merhaby D, Mahfouz C, Amara R, Ouddane B (2015) Accumulation of PAHs, Me-PAHs, PCBs and total mercury in sediments and marine species in coastal areas of Dakar, Senegal: contamination level and impact. Int J Environ Res 9:419–432

    CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    CAS  Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123

    Google Scholar 

  • Palanisami S, Prabaharan D, Uma L (2009) Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol 94(2–3):68–72

    CAS  Google Scholar 

  • Papazi A, Kotzabasis K (2007) Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds — exogenously supplied energy and carbon sources adjust the level of biodegradation. J Biotechnol 129:706–716

    CAS  Google Scholar 

  • Pavoni B, Caliceti M, Sperni L, Sfriso A (2003) Organic micropollutants (PAHs, PCBs, pesticides) in seaweeds of the lagoon of Venice. Ocean Acta 26:585–5960

    CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051

    CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659

    CAS  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu Y-G (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:8, 878–885

    Google Scholar 

  • Qiu YW, Zeng EY, Qiu H, Yu K, Cai S (2017) Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic level. Sci Total Environ 579:1885–1893

    CAS  Google Scholar 

  • Quintana N, Kooy FV, Miranda DVR, Gerben PV, Robert V (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcão V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109

    Google Scholar 

  • Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222

    CAS  Google Scholar 

  • Rastogi R, Sinha R, Incharoensakdi A (2014) The cyanotoxin-microcystins: a current overview. Rev Environ Sci Bio Technol 13:215–249

    CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opinion Biotechnol 19:430–436

    CAS  Google Scholar 

  • Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127(1–2):27–34

    CAS  Google Scholar 

  • Ruzzin J (2012) Public health concern behind the exposure to persistent organic pollutants and the risk of metabolic diseases. BMC Public Health 12:298

    Google Scholar 

  • Safonova E, Kvitko K, Kuschk P, Moder M, Reisser W (2005) Biodegradation of phenanthrene by the green alga Scenedesmus obliquus ES-55. Eng Life Sci 5:234–239

    CAS  Google Scholar 

  • Sanborn M, Kerr KJ, Sanin LH, Cole DC, Bassil KL, Vakil C (2007) Non-cancer health effects of pesticides: systematic review and implications for family doctors. Can Fam Physician 53(10):1712–1720

    CAS  Google Scholar 

  • Scragg AH (2006) The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzym Microb Technol 39:796–799

    CAS  Google Scholar 

  • Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149:65–72

    CAS  Google Scholar 

  • Semple KT, Cain RB (1995) Metabolism of phenols by Ochromonas danica. FEMS Microbiol Lett 133:253–257

    CAS  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273

    CAS  Google Scholar 

  • Semple KT, Cain RB (1997) Biodegradation of phenol and its methylated homologues by Ochromonas danica. FEMS Microbiol Lett 152:133–139

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300

    CAS  Google Scholar 

  • Senthilvelan T, Kanagaraj J, Panda RC, Mandal AB (2014) Biodegradation of phenol by mixed microbial culture: an ecofriendly approach for pollution reduction. Clean Techn Environ Policy 16:113–126

    CAS  Google Scholar 

  • Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine-disrupting insecticide, alpha-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52:3030–3035

    CAS  Google Scholar 

  • Sole A, Matamoros V (2016) Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads. Chemosphere 164:516–523

    CAS  Google Scholar 

  • Soto C, Hellebust JA, Hutchinson TC (1975) Effect of naphthalene and crude oil extracts on the green flagellate Chlamydomonas angulosa. II. Photosynthesis and the uptake and release of naphthalene. Can J Bot 53:118–126

    CAS  Google Scholar 

  • Souza EC, Vessoni-Penna TC, Oliveira RPDS (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Biodeterior Biodegradation 89:88–94

    CAS  Google Scholar 

  • Stange K, Swackhamer DL (1994) Factors affecting phytoplankton species-specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environmental Toxicology and Chemistry 13(11):1849–1860

    CAS  Google Scholar 

  • Stanier RY, Sistrom WR, Hansen TA, Whitton BA, Castenholz RW, Pfennig N, Gorlenko VN, Kondratieva EN, Eimhjellen KE, Whittenbury R (1978) Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the international code of nomenclature of bacteria. Int J Syst Evol Microbiol 28(2):335–336

    Google Scholar 

  • Staples CA, Dorn PB, Klecka GM, Branson DR, O’Block ST, Harris LR (1998) A review of the environmental fate, effects and exposures of Bisphenol A. Chemosphere 36:2149–2173

    CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907

    CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24:97–124

    CAS  Google Scholar 

  • Sijm D, Broersen KW, de Roode DF, Mayer P (1998) Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa. Environ Toxicol Chem. 17:1695–704

    Google Scholar 

  • Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162

    CAS  Google Scholar 

  • Thengodkar RRM, Sivakami S (2010) Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21(4):637–644

    CAS  Google Scholar 

  • Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Technol Biotechnol 68:425–431

    CAS  Google Scholar 

  • Turner JT (2014) Planktonic marine copepods and harmful algae. Harmful Algae 32:81–93

    CAS  Google Scholar 

  • Valério E, Chambel L, Paulino S, Faria N, Pereira P, Tenreiro R (2009) Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology 155(Pt 2):642–656

    Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresource Technology 223:277–286

    CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeter Biodegr 120:71–83

    CAS  Google Scholar 

  • Vested A, Giwercman A, Bonde JP, Toft G (2014) Persistent organic pollutants and male reproductive health. Asian J Androl 16(1):71–80

    Google Scholar 

  • Waigi MG, Kang F, Goikavi C, Ling W, Gao Y (2015) Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review. Int Biodeterior Biodegradation 104:333–349

    CAS  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Environ Microbiol 30:79–81

    CAS  Google Scholar 

  • Walker TL, Becker DK, Dale JL, Collet C (2005) Towards the development of a nuclear transformation system for Dunaliella tertiolecta. J Appl Phycol 17:363–368

    CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan QC (2008) CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79(5):707–718

    Google Scholar 

  • Wang J, Yang H, Wang F (2014) Mixotrophic Cultivation of Microalgae for Biodiesel Production: Status and Prospects. Applied Biochemistry and Biotechnology 172(7):3307–3329

    CAS  Google Scholar 

  • Wang C, Lin X, Li L, Lin L, Lin S (2017a) Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source. Front Microbiol 8:2530

    Google Scholar 

  • Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017b) Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. J Hazard Mater 339:310–319

    CAS  Google Scholar 

  • Warshawsky D, Keenan TH, Reilman R, Cody TE, Radike MJ (1990) Conjugation of benzo(a)pyrene by freshwater green alga Selenastrum capricornutum. Chem Biol Interact 74:93–105

    CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    CAS  Google Scholar 

  • Winneke G (2011) Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308(1–2):9–15

    CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbial-diesel production. Appl Microbiol Biotechnol 78:29–36

    CAS  Google Scholar 

  • Yan X, Yang Y, Li Y, Sheng G, Yan G (2002) Accumulation and biodegradation of anthracene by Chlorella protothecoides under different trophic conditions. Chin J Appl Ecol 13:145–150

    CAS  Google Scholar 

  • Yang S, Wu RSS, Kong YC (2002) Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat Toxicol 59:191–200

    CAS  Google Scholar 

  • Zaini MAA, Amano Y, Machida M (2010) Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber. J Hazar Mater 180:552–560

    CAS  Google Scholar 

  • Zhang H, Jiang X, Lu L, Xiao W (2015) Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1, H.-J. Lehmler. PLoS One 10(7):e0131450

    Google Scholar 

Download references

Acknowledgment

Authors (A.P. and M.P.S.) would like to give their sincere thanks to Ministry of Human Resource Development (MHRD), New Delhi (India), for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, A., Singh, M.P., Kumar, S., Srivastava, S. (2019). Phycoremediation of Persistent Organic Pollutants from Wastewater: Retrospect and Prospects. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_11

Download citation

Publish with us

Policies and ethics