Skip to main content

PFKP Signaling at a Glance: An Emerging Mediator of Cancer Cell Metabolism

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1134))

Abstract

Phosphofructokinase-1 (PFK-1), a rate-determining enzyme of glycolysis, is an allosteric enzyme that regulates the oxidation of glucose in cellular respiration. Glycolysis phosphofructokinase platelet (PFKP) is the platelet isoform and works as an important mediator of cell metabolism. Considering that PFKP is a crucial player in many steps of cancer initiation and metastasis, we reviewed the specificities and complexities of PFKP and its biological roles in human diseases, especially malignant tumors. The possible use of PFKP as a diagnostic marker or a drug target in the prevention or treatment of cancer is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vora S, Halper JP, Knowles DM (1985) Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation-and progression-linked discriminants of malignancy. Cancer Res 45(7):2993–3001

    CAS  PubMed  Google Scholar 

  2. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mulukutla BC, Yongky A, Daoutidis P, Hu WS (2014) Bistability in glycolysis pathway as a physiological switch in energy metabolism. PLoS One 9(6):e98756

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q et al (2017) Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 8(1):949

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moon JS, Kim HE, Koh E, Park SH, Jin WJ, Park BW et al (2011) Krüppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J Biol Chem 286(27):23808–23816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Webb BA, Forouhar F, Szu FE, Seetharaman J, Tong L, Barber DL (2015) Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature 523(7558):111–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vora S, Miranda AF, Hernandez E, Francke U (1983) Regional assignment of the human gene for platelet-type phosphofructokinase (PFKP) to chromosome 10p: novel use of polyspecific rodent antisera to localize human enzyme genes. Hum Genet 63(4):374–379

    Article  CAS  PubMed  Google Scholar 

  8. Basse AL, Isidor MS, Winther S, Skjoldborg NB, Murholm M, Andersen ES et al (2017) Regulation of glycolysis in brown adipocytes by HIF-1α. Sci Rep 7(1):4052. https://doi.org/10.1038/s41598-017-04246-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I, Asara JM et al (2014) ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev 28(17):1917–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pegoraro C, Maczkowiak F, Monsoro-Burq AH (2013) Pfkfb (6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase) isoforms display a tissue-specific and dynamic expression during Xenopus laevis development. Gene Expr Patterns 13(7):203–211

    Article  CAS  PubMed  Google Scholar 

  11. Wu C, Khan SA, Peng LJ, Lange AJ (2006) Roles for fructose-2, 6-bisphosphate in the control of fuel metabolism: beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Adv Enzym Regul 46(1):72–88

    Article  CAS  Google Scholar 

  12. Wang J, Siu MKY, Jiang Y, Leung THY, Ngan HYS, Cheung ANY, et al. Abstract LB-269: PFKP/PFKFB3 modulate metabolic switch and chemoresistance to cisplatin in ovarian cancer, proceedings: AACR annual meeting 2017; April 1–5, 2017; Washington, DC

    Google Scholar 

  13. Uyar A, Torrealday S, Seli E (2013) Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril 99(4):979–997

    Article  CAS  PubMed  Google Scholar 

  14. Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K et al (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134(14):2593–2603

    Article  CAS  PubMed  Google Scholar 

  15. Sugiura K, Pendola FL, Eppig JJ (2005) Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 279(1):20–30

    Article  CAS  PubMed  Google Scholar 

  16. Griswold MD (1998) The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 9(4):411–416

    Article  CAS  PubMed  Google Scholar 

  17. Chen SR, Tang JX, Cheng JM, Li J, Jin C, Li XY et al (2015) Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 6(35):37012–37027

    PubMed Central  PubMed  Google Scholar 

  18. Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez VM et al (2016) GATA4 regulates blood-testis barrier function and lactate metabolism in mouse Sertoli cells. Endocrinology 157(6):2416–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Häkkinen M, Fischer S et al (2015) GATA4 is a key regulator of steroidogenesis and glycolysis in mouse Leydig cells. Endocrinology 156(5):1860–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moeller LC, Cao X, Dumitrescu AM, Seo H, Refetoff S (2006) Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor β through the phosphatidylinositol 3-kinase pathway. Nucl Recept Signal 4:e020. https://doi.org/10.1621/nrs.04020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Moeller LC, Dumitrescu AM, Refetoff S (2005) Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1α and glycolytic genes. Mol Endocrinol 19(12):2955–2963

    Article  CAS  PubMed  Google Scholar 

  22. Yang XY, Zheng KD, Lin K, Zheng G, Zou H, Wang JM et al (2015) Energy metabolism disorder as a contributing factor of rheumatoid arthritis: a comparative proteomic and metabolomic study. PLoS One 10(7):e0132695. https://doi.org/10.1371/journal.pone.0132695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Woźny Ł, Danikiewicz M, Stefanowicz M, Wojtas E, Gola M, Śnit M et al (2017) The importance of platelet phosphofructokinase (PFKP) rs6602024 polymorphism in pathogenesis of obesity. Annales Academiae Medicae Silesiensis 71:173–182

    Article  Google Scholar 

  24. Andreasen CH, Mogensen MS, Borch-Johnsen K, Sandbaek A, Lauritzen T, Sørensen TI et al (2006) Non-replication of genome-wide based associations between common variants in INSIG2 and PFKP and obesity in studies of 18,014 Danes. PLoS One 3(8):e2872. https://doi.org/10.1371/journal.pone.0002872

    Article  CAS  Google Scholar 

  25. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3(7):e115. https://doi.org/10.1371/journal.pgen.0030115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Morgan AR, Thompson JM, Murphy R, Black PN, Lam WJ, Ferguson LR et al (2010) Obesity and diabetes genes are associated with being born small for gestational age: results from the Auckland Birthweight Collaborative study. BMC Med Genet 11(1):125. https://doi.org/10.1186/1471-2350-11-125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chen C, Liao D, Wang J, Liang Z, Yao Q (2014) Anti-human protein S antibody induces tissue factor expression through a direct interaction with platelet phosphofructokinase. Thromb Res 133(2):222–228

    Article  CAS  PubMed  Google Scholar 

  28. Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P et al (2017) PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab 25(5):1118–1134 e7

    Article  CAS  PubMed  Google Scholar 

  29. Li XB, Gu JD, Zhou QH (2015) Review of aerobic glycolysis and its key enzymes–new targets for lung cancer therapy. Thorac Cancer 6(1):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oparina NY, Snezhkina AV, Sadritdinova AF, Veselovskii VA, Dmitriev AA, Senchenko VN et al (2013) Differential expression of genes that encode glycolysis enzymes in kidney and lung cancer in humans. Genetika 49(7):707–716

    CAS  Google Scholar 

  31. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274(6):1393–1418

    Article  PubMed  Google Scholar 

  32. Lindqvist BM, Wingren S, Motlagh PB, Nilsson TK (2014) Whole genome DNA methylation signature of HER2-positive breast cancer. Epigenetics 9(8):1149–1162

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ et al (2018) EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell 70(2):197–210

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim NH, Cha YH, Lee J, Lee SH, Yang JH, Yun JS et al (2017) Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun 8:14374. https://doi.org/10.1038/ncomms14374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chen Y, Xu Q, Ji D, Wei Y, Chen H, Li T et al (2016) Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia. Tumor Biol 37(5):6027–6034

    Article  CAS  Google Scholar 

  36. Sun CM, Xiong DB, Yan Y, Geng J, Liu M, Yao XD (2016) Genetic alteration in phosphofructokinase family promotes growth of muscle-invasive bladder cancer. Int J Biol Markers 31(3):286–293

    Article  Google Scholar 

  37. Wang Y, Mei Q, Ai YQ, Li RQ, Chang L, Li YF et al (2015) Identification of lung cancer oncogenes based on the mRNA expression and single nucleotide polymorphism profile data. Neoplasma 62(6):966–973

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Zhang P, Zhong J, Tan M, Ge J, Tao L et al (2016) The platelet isoform of phosphofructokinase contributes to metabolic reprogramming and maintains cell proliferation in clear cell renal cell carcinoma. Oncotarget 7(19):27142–27157

    PubMed Central  PubMed  Google Scholar 

  39. Sanders E, Diehl S (2015) Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma. Oncoscience 2(2):151–186

    Article  PubMed  PubMed Central  Google Scholar 

  40. Park YY, Kim SB, Han HD, Sohn BH, Kim JH, Liang J et al (2013) Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology 58(1):182–191

    Article  CAS  PubMed  Google Scholar 

  41. Liu L, Wang Y, Bai R, Yang K, Tian Z (2016) MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation. Oncogene 5(5):e224. https://doi.org/10.1038/oncsis.2016.35

    Article  CAS  Google Scholar 

  42. Prasad CP, Södergren K, Andersson T (2017) Reduced production and uptake of lactate are essential for the ability of WNT5A signaling to inhibit breast cancer cell migration and invasion. Oncotarget 8(42):71471–71488

    Article  PubMed  PubMed Central  Google Scholar 

  43. Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14(3):321–324

    Article  PubMed  Google Scholar 

  44. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925

    Article  CAS  PubMed  Google Scholar 

  45. Lee SY, Jin CC, Choi JE, Hong MJ, Jung DK, Do SK et al (2016) Genetic polymorphisms in glycolytic pathway are associated with the prognosis of patients with early stage non-small cell lung cancer. Sci Rep 6:35603. https://doi.org/10.1038/srep35603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Spitz GA, Furtado CM, Sola-Penna M, Zancan P (2009) Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity. Biochem Pharmacol 77(1):46–53

    Article  CAS  PubMed  Google Scholar 

  47. Riquelme PT, Wernette-Hammond ME, Kneer NM, Lardy HA (1984) Mechanism of action of 2, 5-anhydro-D-mannitol in hepatocytes. Effects of phosphorylated metabolites on enzymes of carbohydrate metabolism. J Biol Chem 259(8):5115–5123

    CAS  PubMed  Google Scholar 

  48. Vértessy BG, Kovács J, Löw P, Lehotzky A, Molnár A, Orosz F et al (1997) Characterization of microtubule− phosphofructokinase complex: specific effects of MgATP and vinblastine. Biochemistry 36(8):2051–2062

    Article  PubMed  Google Scholar 

  49. Glass-Marmor L, Beitner R (1999) Taxol (paclitaxel) induces a detachment of phosphofructokinase from cytoskeleton of melanoma cells and decreases the levels of glucose 1, 6-bisphosphate, fructose 1, 6-bisphosphate and ATP. Eur J Pharmacol 370(2):195–199

    Article  CAS  PubMed  Google Scholar 

  50. Penso J, Beitner R (2002) Detachment of glycolytic enzymes from cytoskeleton of Lewis lung carcinoma and colon adenocarcinoma cells induced by clotrimazole and its correlation to cell viability and morphology. Mol Genet Metab 76(3):181–188

    Article  CAS  PubMed  Google Scholar 

  51. Marcondes MC, Sola-Penna M, Zancan P (2010) Clotrimazole potentiates the inhibitory effects of ATP on the key glycolytic enzyme 6-phosphofructo-1-kinase. Arch Biochem Biophys 497(1–2):62–67

    Article  CAS  PubMed  Google Scholar 

  52. Redman R, Pohlmann P, Kurman M, Tapolsky GH, Chesney J (2015) Abstract CT206: PFK-158, first-in-man and first-in-class inhibitor of PFKFB3/glycolysis: a phase I, dose escalation, multi-center study in patients with advanced solid malignancies. In: Proceedings: AACR 106th annual meeting 2015; April 18–22. USA, Philadelphia, PA, p 2015

    Google Scholar 

  53. Sakai A, Kusumoto A, Kiso Y, Furuya E (2004) Itaconate reduces visceral fat by inhibiting fructose 2, 6-bisphosphate synthesis in rat liver. Nutrition 20(11–12):997–1002

    Article  CAS  PubMed  Google Scholar 

  54. Brüser A, Kirchberger J, Kloos M, Sträter N, Schöneberg T (2012) Functional linkage of adenine nucleotide binding sites in mammalian muscle 6-phosphofructokinase. J Biol Chem 287(21):17546–17553

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Teng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lang, L., Chemmalakuzhy, R., Shay, C., Teng, Y. (2019). PFKP Signaling at a Glance: An Emerging Mediator of Cancer Cell Metabolism. In: Guest, P. (eds) Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-030-12668-1_13

Download citation

Publish with us

Policies and ethics