Skip to main content

Cellular Injury Biomechanics of Central Nervous System Trauma

  • Chapter
  • First Online:
Trauma Biomechanics

Abstract

Traumatic brain injury (TBI) remains a significant source of mortality and morbidity throughout the world, in part because of the complex mechanisms. The complexity arises not only from the complicated intracranial biomechanics, but because that mechanical stimulus is only the start of a series of biological responses that unfold over minutes to days after the event. In this chapter, co-authors Nevin Varghese and Barclay Morrison explore the effect on cells of the primary injury that occurs during the mechanical event and the ensuing biological mechanisms of the secondary injury process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  Google Scholar 

  • Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF (2000) Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74:1951–1960

    Article  Google Scholar 

  • Ahmed SM, Weber JT, Liang S, Willoughby KA, Sitterding HA, Rzigalinski BA, Ellis EF (2002) NMDA receptor activation contributes to a portion of the decreased mitochondrial membrane potential and elevated intracellular free calcium in strain-injured neurons. J Neurotrauma 19:1619–1629

    Article  Google Scholar 

  • Ai J, Liu E, Wang J, Chen Y, Yu J, Baker AJ (2007) Calpain inhibitor MDL-28170 reduces the functional and structural deterioration of corpus callosum following fluid percussion injury. J Neurotrauma 24:960–978

    Google Scholar 

  • Aihara N, Hall JJ, Pitts LH, Fukuda K, Noble LJ (1995) Altered immunoexpression of microglia and macrophages after mild head injury. J Neurotrauma 12:53–63

    Article  Google Scholar 

  • Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  Google Scholar 

  • Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B (2015) Blood-brain barrier dysfunction following traumatic brain injury. Metab Brain Dis 30:1093–1104

    Article  Google Scholar 

  • Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20:4091–4098

    Article  Google Scholar 

  • Amini M, Ma CL, Farazifard R, Zhu G, Zhang Y, Vanderluit J, Zoltewicz JS, Hage F, Savitt JM, Lagace DC, Slack RS, Beique JC, Baudry M, Greer PA, Bergeron R, Park DS (2013) Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury. J Neurosci 33:5773–5784

    Article  Google Scholar 

  • Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  Google Scholar 

  • Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 45:443–452

    Article  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Google Scholar 

  • Bartha K, Domotor E, Lanza F, Adam-Vizi V, Machovich R (2000) Identification of thrombin receptors in rat brain capillary endothelial cells. J Cereb Blood Flow Metab 20:175–182

    Article  Google Scholar 

  • Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36

    Article  Google Scholar 

  • Bernath E, Kupina N, Liu MC, Hayes RL, Meegan C, Wang KK (2006) Elevation of cytoskeletal protein breakdown in aged Wistar rat brain. Neurobiol Aging 27:624–632

    Article  Google Scholar 

  • Bi RF, Bi XN, Baudry M (1998) Phosphorylation regulates calpain-mediated truncation of glutamate ionotropic receptors. Brain Res 797:154–158

    Article  Google Scholar 

  • Blanc EM, Bruce-Keller AJ, Mattson MP (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70:958–970

    Article  Google Scholar 

  • Boron WF, Boulpaep EL (2017) Medical physiology. Elsevier, Philadelphia, PA

    Google Scholar 

  • Bowman CL, Ding JP, Sachs F, Sokabe M (1992) Mechanotransducing ion channels in astrocytes. Brain Res 584:272–286

    Article  Google Scholar 

  • Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC (2017) Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 1657:167–175

    Article  Google Scholar 

  • Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J (2015) Potential use of calpain inhibitors as brain injury therapy. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Cargill RS, Thibault LE (1996) Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J Neurotrauma 13:395–407

    Article  Google Scholar 

  • Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, Grimm E, Callaghan SM, Slack RS, Melloni E, Przedborski S, Robertson GS, Anisman H, Merali Z, Park DS (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of parkinson’s disease. J Neurosci 23:4081–4091

    Article  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  Google Scholar 

  • Cullen DK, Vernekar VN, Laplaca MC (2011) Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 28:2219–2233

    Article  Google Scholar 

  • Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    Article  Google Scholar 

  • del Cerro S, Larson J, Oliver MW, Lynch G (1990) Development of hippocampal long-term potentiation is reduced by recently introduced calpain inhibitors. Brain Res 530:91–95

    Article  Google Scholar 

  • Domoki F, Kis B, Gaspar T, Bari F, Busija DW (2008) Cerebromicrovascular endothelial cells are resistant to l-glutamate. Am J Physiol Regul Integr Comp Physiol 295:R1099–R1108

    Article  Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci 15:6377–6388

    Article  Google Scholar 

  • Engl E, Attwell D (2015) Non-signalling energy use in the brain. J Physiol 593:3417–3429

    Article  Google Scholar 

  • Farkas O, Lifshitz J, Povlishock JT (2006) Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury? J Neurosci 26:3130–3140

    Article  Google Scholar 

  • Ferreira A, Bigio EH (2011) Calpain-mediated tau cleavage: a mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med 17:676–685

    Article  Google Scholar 

  • Floyd CL, Gorin FA, Lyeth BG (2005) Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51:35–46

    Article  Google Scholar 

  • Foo K, Blumenthal L, Man HY (2012) Regulation of neuronal bioenergy homeostasis by glutamate. Neurochem Int 61:389–396

    Article  Google Scholar 

  • Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S, Lakadamyali M, Bayer J, Rillich K, Gogler M, Lu YB, Reichenbach A, Janmey P, Kas J (2009) Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys J 97:1883–1890

    Article  Google Scholar 

  • Gafni J, Ellerby LM (2002) Calpain activation in huntington’s disease. J Neurosci 22:4842–4849

    Article  Google Scholar 

  • Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR, Ellerby LM (2004) Inhibition of calpain cleavage of huntingtin reduces toxicity: Accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279:20211–20220

    Article  Google Scholar 

  • Galbraith JA, Thibault LE, Matteson DR (1993) Mechanical and electrical responses of the giant squid axon to simple elongation. J Biomech Eng 115:13–22

    Article  Google Scholar 

  • Ganot G, Wong BS, Binstock L, Ehrenstein G (1981) Reversal potentials corresponding to mechanical stimulation and leakage current in myxicola giant axons. Biochem Biophys Acta 649:487–491

    Article  Google Scholar 

  • Geddes DM, Cargill RS, Laplaca MC (2003) Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 20:1039–1049

    Article  Google Scholar 

  • Grammer M, Kuchay S, Chishti A, Baudry M (2005) Lack of phenotype for LTP and fear conditioning learning in calpain 1 knock-out mice. Neurobiol Learn Mem 84:222–227

    Article  Google Scholar 

  • Hall ED, Detloff MR, Johnson K, Kupina NC (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21:9–20

    Article  Google Scholar 

  • Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7:51–61

    Article  Google Scholar 

  • Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9:S425–S442

    Article  Google Scholar 

  • Hamakubo T, Kannagi R, Murachi T, Matus A (1986) Distribution of calpains I and II in rat brain. J Neurosci 6:3103–3111

    Article  Google Scholar 

  • Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431

    Article  Google Scholar 

  • Hayes RL, Katayama Y, Young HF, Dunbar JG (1988) Coma associated with flaccidity produced by fluid-percussion concussion in the cat. I: Is it due to depression of activity within the brainstem reticular formation? Brain Inj 2:31–49

    Google Scholar 

  • Hicks RR, Baldwin SA, Scheff SW (1997) Serum extravasation and cytoskeletal alterations following traumatic brain injury in rats. Comparison of lateral fluid percussion and cortical impact models. Mol Chem Neuropathol 32:1–16

    Article  Google Scholar 

  • Hooper C, Pinteaux-Jones F, Fry VA, Sevastou IG, Baker D, Heales SJ, Pocock JM (2009) Differential effects of albumin on microglia and macrophages; implications for neurodegeneration following blood-brain barrier damage. J Neurochem 109:694–705

    Article  Google Scholar 

  • Hooper C, Taylor DL, Pocock JM (2005) Pure albumin is a potent trigger of calcium signalling and proliferation in microglia but not macrophages or astrocytes. J Neurochem 92:1363–1376

    Article  Google Scholar 

  • Hovda DA, Yoshino A, Kawamata T, Katayama Y, Becker DP (1991) Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res 567:1–10

    Article  Google Scholar 

  • Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222–1232

    Article  Google Scholar 

  • Hue CD, Cao S, Haider SF, Vo KV, Effgen GB, Vogel E III, Panzer MB, Bass CR, Meaney DF, Morrison B III (2013) Blood-brain barrier dysfunction after primary blast injury in vitro. J Neurotrauma 30:1652–1663

    Article  Google Scholar 

  • Hue CD, Cho FS, CaoS Nicholls RE, Vogel Iii EW, Sibindi C, Arancio O, Dale Bass CR, Meaney DF, Morrison B III (2016) Time course and size of blood-brain barrier opening in a mouse model of blast-induced traumatic brain injury. J Neurotrauma 33:1202–1211

    Article  Google Scholar 

  • Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW (2007) The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci 14:507–514

    Article  Google Scholar 

  • Johnson GV, Jope RS (1992) The role of microtubule-associated protein 2 (map-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 33:505–512

    Article  Google Scholar 

  • Jolivet R, Magistretti PJ, Weber B (2009) Deciphering neuron-glia compartmentalization in cortical energy metabolism. Front Neuroenergetics 1:4

    Article  Google Scholar 

  • Julian FJ, Goldman DE (1962) The effects of mechanical stimulation on some electrical properties of axons. J Gen Physiol 46:297–313

    Article  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    Article  Google Scholar 

  • Katayama Y, Becker DP, Tamura T, Hovda DA (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    Article  Google Scholar 

  • Khatri N, Man HY (2013) Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front Neurol 4:199

    Article  Google Scholar 

  • Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nature Struc Biol 9:239

    Article  Google Scholar 

  • Kilinc D, Gallo G, Barbee KA (2008) Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp Neurol 212:422–430

    Article  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  Google Scholar 

  • Kobeissy FH, Liu MC, Yang Z, Zhang Z, Zheng W, Glushakova O, Mondello S, Anagli J, Hayes RL, Wang KK (2015) Degradation of betaii-spectrin protein by calpain-2 and caspase-3 under neurotoxic and traumatic brain injury conditions. Mol Neurobiol 52:696–709

    Article  Google Scholar 

  • Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O’Neill MJ, Perez-Nievas BG, Hanger DP, Noble W (2016) Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in alzheimer’s disease brain. Acta Neuropathol Commun 4:34

    Article  Google Scholar 

  • Kuriakose M, Rama Rao KV, Younger D, Chandra N (2018) Temporal and spatial effects of blast overpressure on blood-brain barrier permeability in traumatic brain injury. Sci Rep 8:8681

    Article  Google Scholar 

  • Laplaca MC, Lee VMY, Thibault LE (1997) An in vitro model of traumatic neuronal injury: loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J Neurotrauma 14:355–368

    Article  Google Scholar 

  • Laplaca MC, Prado GR, Cullen D, Simon CM (2009) Plasma membrane damage as a marker of neuronal injury. Conf Proc IEEE Eng Med Biol Soc 2009:1113–1116

    Google Scholar 

  • Liao Y, Liu P, Guo F, Zhang ZY, Zhang Z (2013) Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS ONE 8:e68963

    Article  Google Scholar 

  • Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P, Saatman KE, Wieloch T, Grady MS, McIntosh TK (2003) Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab 23:219–231

    Article  Google Scholar 

  • Liu J, Wang Y, Zhuang Q, Chen M, Wang Y, Hou L, Han F (2016) Protective effects of cyclosporine a and hypothermia on neuronal mitochondria in a rat asphyxial cardiac arrest model. Am J Emerg Med 34:1080–1085

    Article  Google Scholar 

  • Lusardi TA, Smith DH, Wolf JA, Meaney DF (2003) The separate roles of calcium and mechanical forces in mediating cell death in mechanically injured neurons. Biorheology 40:401–409

    Google Scholar 

  • Lynch G, Baudry M (1987) Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull 18:809–815

    Article  Google Scholar 

  • Ma M, Shofer FS, Neumar RW (2012) Calpastatin overexpression protects axonal transport in an in vivo model of traumatic axonal injury. J Neurotrauma 29:2555–2563

    Article  Google Scholar 

  • Mazzeo AT, Beat A, Singh A, Bullock MR (2009) The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after tbi. Exp Neurol 218:363–370

    Article  Google Scholar 

  • Melloni E, Salamino F, Sparatore B (1992) The calpain-calpastatin system in mammalian cells: properties and possible functions. Biochimie 74:217–223

    Article  Google Scholar 

  • Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL (2002) A Ca(2+) switch aligns the active site of calpain. Cell 108:649–660

    Article  Google Scholar 

  • Moller T, Hanisch UK, Ransom BR (2000) Thrombin-induced activation of cultured rodent microglia. J Neurochem 75:1539–1547

    Article  Google Scholar 

  • Momeni HR (2011) Role of calpain in apoptosis. Cell J 13:65–72

    Google Scholar 

  • Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280

    Google Scholar 

  • Nilsson P, Hillered L, Ponten U, Ungerstedt U (1990) Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631–637

    Article  Google Scholar 

  • Pardridge WM (1998) CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70:1781–1792

    Google Scholar 

  • Pellerin L, Magistretti PJ (2003) How to balance the brain energy budget while spending glucose differently. J Physiol 546:325

    Article  Google Scholar 

  • Pettigrew LC, Holtz ML, Craddock SD, Minger SL, Hall N, Geddes JW (1996) Microtubular proteolysis in focal cerebral ischemia. J Cereb Blood Flow Metab 16:1189–1202

    Article  Google Scholar 

  • Pettus EH, Christman CW, Giebel ML, Povlishock JT (1994) Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma 11:507–522

    Google Scholar 

  • Prado GR, Ross JD, Deweerth SP, Laplaca MC (2005) Mechanical trauma induces immediate changes in neuronal network activity. J Neural Eng 2:148–158

    Article  Google Scholar 

  • Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci USA 99:10237–10239

    Article  Google Scholar 

  • Rose CR, Konnerth A (2001) NMDA receptor-mediated Na+ signals in spines and dendrites. J Neurosci 21:4207–4214

    Google Scholar 

  • Ryu J, Pyo H, Jou I, Joe E (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J Biol Chem 275:2995559

    Google Scholar 

  • Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF (1998) Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem 70:2377–2385

    Article  Google Scholar 

  • Saatman KE, Graham DI, McIntosh TK (1998) The neuronal cytoskeleton is at risk after mild and moderate brain injury. J Neurotrauma 15:1047–1058

    Article  Google Scholar 

  • Samantaray S, Ray SK, Banik NL (2008) Calpain as a potential therapeutic target in parkinson’s disease. CNS Neurol Disord Drug Targets 7:305–312

    Article  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  Google Scholar 

  • Sengpiel B, Preis E, Krieglstein J, Prehn JH (1998) NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Euro J Neurosci 10:1903–1910

    Article  Google Scholar 

  • Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77:141–148

    Google Scholar 

  • Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL (1999) Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96:8235–8240

    Article  Google Scholar 

  • Shi R, Blight AR (1996) Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. J Neurophysiol 76:1572–1580

    Article  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    Article  Google Scholar 

  • Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418

    Article  Google Scholar 

  • Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11:393–404

    Article  Google Scholar 

  • Staubli U, Larson J, Thibault O, Baudry M, Lynch G (1988) Chronic administration of a thiol-proteinase inhibitor blocks long-term potentiation of synaptic responses. Brain Res 444:153–158

    Article  Google Scholar 

  • Takahashi H, Manaka S, Sano K (1981) Changes in extracellular potassium concentration in cortex and brain stem during the acute phase of experimental closed head injury. J Neurosurg 55:708–717

    Article  Google Scholar 

  • Tanaka H, Katayama Y, Kawamata T, Tsubokawa T (1994) Excitatory amino acid release from contused brain tissue into surrounding brain areas. Acta Neurochir Suppl (Wien) 60:524–527

    Google Scholar 

  • Tecoma ES, Monyer H, Goldberg MP, Choi DW (1989) Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron 2:1541–1545

    Article  Google Scholar 

  • Thibault LE, Nahum AM, Melvin JW (1993) Isolated tissue and cellular biomechanics. In: Accidental injury: biomechanics and prevention. New York: Springer-Verlag

    Google Scholar 

  • Vega-Zelaya L, Ortega GJ, Sola RG, Pastor J (2014) Plasma albumin induces cytosolic calcium oscillations and DNA synthesis in human cultured astrocytes. Biomed Res Int 2014:539140

    Article  Google Scholar 

  • Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP (2000) Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 93:815–820

    Article  Google Scholar 

  • Vinade L, Petersen JD, Do K, Dosemeci A, Reese TS (2001) Activation of calpain may alter the postsynaptic density structure and modulate anchoring of NMDA receptors. Synapse 40:302–309

    Article  Google Scholar 

  • Vogel EW III, Rwema SH, Meaney DF, Bass CR, Morrison B III (2017) Primary blast injury depressed hippocampal long-term potentiation through disruption of synaptic proteins. J Neurotrauma 34:1063–1073

    Article  Google Scholar 

  • Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38:78–100

    Article  Google Scholar 

  • Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  Google Scholar 

  • Watanabe J, Shetty AK, Hattiangady B, Kim DK, Foraker JE, Nishida H, Prockop DJ (2013) Administration of TSG-6 improves memory after traumatic brain injury in mice. Neurobiol Dis 59:86–99

    Article  Google Scholar 

  • White RJ, Reynolds IJ (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15:1318–1328

    Article  Google Scholar 

  • White RJ, Reynolds IJ (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 16:5688–5697

    Article  Google Scholar 

  • Wiggins-Dohlvik K, Merriman M, Shaji CA, Alluri H, Grimsley M, Davis ML, Smith RW, Tharakan B (2014) Tumor necrosis factor-alpha disruption of brain endothelial cell barrier is mediated through matrix metalloproteinase-9. Am J Surg 208:954–960; discussion 60

    Google Scholar 

  • Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9:948–959

    Article  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  Google Scholar 

  • Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH (2001) Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 21:1923–1930

    Article  Google Scholar 

  • Won SM, Lee JH, Park UJ, Gwag J, Gwag BJ, Lee YB (2011) Iron mediates endothelial cell damage and blood-brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Exp Mol Med 43:121–128

    Article  Google Scholar 

  • Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP (1997) Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma 14:23–34

    Article  Google Scholar 

  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

    Article  Google Scholar 

  • Yu SP, Yeh C, Strasser U, Tian M, Choi DW (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336–339

    Article  Google Scholar 

  • Yu Y, Herman P, Rothman DL, Agarwal D, Hyder F (2017) Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab: 271678x17708691

    Google Scholar 

  • Zhao X, Gorin FA, Berman RF, Lyeth BG (2008) Differential hippocampal protection when blocking intracellular sodium and calcium entry during traumatic brain injury in rats. J Neurotrauma 25:1195–1205

    Article  Google Scholar 

  • Zhu XH, Qiao H, Du F, Xiong Q, Liu X, Zhang X, Ugurbil K, Chen W (2012) Quantitative imaging of energy expenditure in human brain. Neuroimage 60:2107–2117

    Article  Google Scholar 

  • Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitt, KU., Niederer, P.F., Cronin, D.S., Morrison III, B., Muser, M.H., Walz, F. (2019). Cellular Injury Biomechanics of Central Nervous System Trauma. In: Trauma Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-11659-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11659-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11658-3

  • Online ISBN: 978-3-030-11659-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics