Skip to main content

Nonlinear Sampled-Data Stabilization with Delays

  • Chapter
  • First Online:
Delays and Interconnections: Methodology, Algorithms and Applications

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 10))

  • 494 Accesses

Abstract

In this work, how sampling can be instrumental for stabilizing nonlinear dynamics with delays is discussed through several approaches developed by the authors in a comparative perspective with respect to the existing literature. Performances and computational aspects are illustrated through academic examples.

L2S (CNRS and Université Paris-Sud) and DIAG (Università di Roma ‘La Sapienza’) with mobility support from the Université Franco-Italienne/Università Italo-Francese (UFI/UIF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assuming the delay free dynamics forward complete ensures that the delayed one (1) is too: \(\forall x_0\) and \(u\in M^{[-\tau , \infty )}_U\) the solution x(t) of (1) with initial condition \(x(0) = x_0 \in \mathbb {R}^n\) exists \(\forall t\ge 0\).

  2. 2.

    \(L_f\) denotes the Lie derivative operator, \(L_f = \sum _{i= 1}^n f_i(\cdot )\frac{\partial }{\partial x_i}\). \(e^{L_f} \)(or \(e^f\), when no confusion arises) denotes the associated Lie series operator, \(e^{\mathrm {L}_f} := 1 + \sum _{i \ge 1}\frac{L_f^i}{i!}\).

  3. 3.

    A function \(R(x,\delta )= O(\delta ^p)\) is said of order \(\delta ^p; p \ge 1\) if whenever it is defined it can be written as \(R(x, \delta ) = \delta ^{p-1}\tilde{R}(x, \delta )\) and there exist a function \({\theta \in \mathcal {K}_{\infty }}\) and \(\delta ^* >0\) s.t. \(\forall \delta \le \delta ^*\), \(| \tilde{R} (x, \delta )| \le \theta (\delta )\).

  4. 4.

    \(\circ \) denotes the composition of operators and functions.

  5. 5.

    Mappings and dynamics are parameterized by \(\delta \) as indicated with superscript \((\cdot )^{\delta }\).

References

  1. Astolfi, A., Karagiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer Publishing Company, Berlin (2008)

    Book  Google Scholar 

  2. Astolfi, A., Ortega, R.: Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Autom. Control 48(4), 590–606 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear system. IEEE Trans. Autom. Control 58(2), 275–289 (2013)

    Article  MathSciNet  Google Scholar 

  4. Califano, C., Marquez-Martinez, L., Moog, C.: Linearization of time-delay systems by input-output injection and output transformation. Automatica 49(6), 1932–1940 (2013)

    Google Scholar 

  5. Celsi, L., Bonghi, R., Monaco, S., Normand-Cyrot, D.: On the exact steering of finite sampled nonlinear dynamics with input delays. IFAC-PapersOnLine 48(11), 674–679 (2015)

    Article  Google Scholar 

  6. Di Giamberardino, P., Monaco, S., Normand-Cyrot, D.: Why multirate sampling is instrumental for control design purpose: the example of the one-leg hopping robot. In: Proceedings of the 41st IEEE CDC, vol. 3, pp. 3249–3254 (2002)

    Google Scholar 

  7. Di Giamberardino, P., Monaco. S., Normand-Cyrot, D.: On equivalence and feedback equivalence to finitely computable sampled models. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5869–5874. https://doi.org/10.1109/CDC.2006.377699 (2006)

  8. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Systems & Control: Foundations & Applications (2014)

    Google Scholar 

  10. Karafyllis, I., Krstic, M.: Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold. IEEE Trans. Autom. Control 57(5), 1141–1154 (2012)

    Article  MathSciNet  Google Scholar 

  11. Karafyllis, I., Krstic, M.: Numerical schemes for nonlinear predictor feedback. Math. Control Signals Syst. 26, 519–546 (2014)

    Article  MathSciNet  Google Scholar 

  12. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Springer, Berlin (2009)

    Book  Google Scholar 

  13. Krstic, M.: Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55(2), 287–303 (2010)

    Article  MathSciNet  Google Scholar 

  14. Mattioni, M., Monaco, S., Normand-Cyrot, D.: Digital stabilization of strict feedback dynamics through immersion and invariance. In: Proceedings of the IFAC MICNON, pp. 1085–1090. St Petersbourg (2015)

    Google Scholar 

  15. Mattioni, M., Monaco, S., Normand Cyrot, D.: Sampled-data stabilisation of a class of state-delayed nonlinear dynamics. In: 54th IEEE Conference on Decision and Control (CDC), pp. 5695–5700 (2015)

    Google Scholar 

  16. Mattioni, M., Monaco, S., Normand-Cyrot, D.: Further results on sampled-data stabilization of time-delay systems. In: Proceedings of the 20th IFAC World Congress, pp. 14915–14920 (2017)

    Google Scholar 

  17. Mattioni, M., Monaco, S., Normand-Cyrot, D.: Immersion and invariance stabilization of strict-feedback dynamics under sampling. Automatica 76, 78–86 (2017)

    Article  MathSciNet  Google Scholar 

  18. Mattioni, M., Monaco, S., Normand-Cyrot, D.: Sampled-data reduction of nonlinear input-delayed dynamics. IEEE Control Syst. Lett. 1(1), 116–121 (2017)

    Article  Google Scholar 

  19. Mazenc, F., Fridman, E.: Predictor-based sampled-data exponential stabilization through continuous-discrete observers. Automatica 63, 74–81 (2016)

    Article  MathSciNet  Google Scholar 

  20. Mazenc, F., Malisoff, M., Dinh, T.N.: Robustness of nonlinear systems with respect to delay and sampling of the controls. Automatica 49(6), 1925–1931 (2013)

    Article  MathSciNet  Google Scholar 

  21. Mazenc, F., Niculescu, S., Bekaik, M.: Backstepping for nonlinear systems with delay in the input revisited. SIAM J. Control Optim. 49(6), 2239–2262 (2011)

    Article  MathSciNet  Google Scholar 

  22. Mazenc, F., Normand-Cyrot, D.: Reduction model approach for linear systems with sampled delayed inputs. IEEE Trans. Autom. Control 58(5), 1263–1268 (2013)

    Article  MathSciNet  Google Scholar 

  23. Michiels, W., Niculescu, S.: Stability, Control, and Computation for Time-delay Systems: An Eigenvalue Based Approach. Advances in Design and Control. SIAM Society for Industrial and Applied Mathematics, Philadelphia (2014)

    Book  Google Scholar 

  24. Monaco, S., Normand-Cyrot, D., Mattioni, M.: Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance. IEEE Trans. Autom. Control 62(5), 2561–2567 (2016)

    Article  MathSciNet  Google Scholar 

  25. Monaco, S., Normand-Cyrot, D., Tanasa, V.: Digital stabilization of input delayed strict feedforward dynamics. In: Proceedings of the 51st IEEE-CDC, Maui, Hawaii, pp. 7535–7540 (2012)

    Google Scholar 

  26. Monaco, S., Normand-Cyrot, D., Tiefensee, F.: Sampled-data stabilization; a PBC approach. IEEE Trans. Autom. Control 56, 907–912 (2011)

    Article  MathSciNet  Google Scholar 

  27. Pepe, P.: Stabilization in the sample-and-hold sense of nonlinear retarded systems. SIAM J. Control Optim. 52(5), 3053–3077 (2014)

    Article  MathSciNet  Google Scholar 

  28. Pepe, P.: Robustification of nonlinear stabilizers in the sample-and-hold sense. J. Frankl. Inst. 352(10), 4107–4128 (2015)

    Article  MathSciNet  Google Scholar 

  29. Pepe, P., Fridman, E.: On global exponential stability preservation under sampling for globally lipschitz time-delay systems. Automatica 82(8), 295–300 (2017)

    Article  MathSciNet  Google Scholar 

  30. Respondek, W., Tall, I.: Feedback equivalence of nonlinear control systems: a survey on formal approaches, pp. 137–262. CRC Press, Boca Raton. https://doi.org/10.1201/9781420027853.ch4 (2005). Accessed from 18 Oct 2016

  31. Tanasa, V., Monaco, S., Normand-Cyrot, D.: Digital stabilization of finite sampled nonlinear dynamics with delays: the unicycle example. In: Proceedings of the ECC’13, pp. 2591–2596 (2013)

    Google Scholar 

  32. Tanasa, V., Monaco, S., Normand-Cyrot, D.: Backstepping control under multi-rate sampling. IEEE Trans. Autom. Control 61(5), 1208–1222 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yalcin, Y., Astolfi, A.: Immersion and invariance adaptive control for discrete time systems in strict feedback form. Syst. Control Lett. 61(12), 1132–1137 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothée Normand-Cyrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monaco, S., Normand-Cyrot, D., Mattioni, M. (2019). Nonlinear Sampled-Data Stabilization with Delays. In: Valmorbida, G., Seuret, A., Boussaada, I., Sipahi, R. (eds) Delays and Interconnections: Methodology, Algorithms and Applications. Advances in Delays and Dynamics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-11554-8_19

Download citation

Publish with us

Policies and ethics