Skip to main content

World-Line Perturbation Theory

  • Chapter
  • First Online:
  • 961 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

Abstract

The motion of a compact body in space and time is commonly described by the world line of a point representing the instantaneous position of the body. In General Relativity such a world-line formalism is not quite straightforward because of the strict impossibility to accommodate point masses and rigid bodies. In many situations of practical interest it can still be made to work using an effective hamiltonian or energy-momentum tensor for a finite number of collective degrees of freedom of the compact object. Even so exact solutions of the equations of motion are often not available. In such cases families of world lines of compact bodies in curved space-times can be constructed by a perturbative procedure based on generalized geodesic deviation equations. Examples for simple test masses and for spinning test bodies are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here and in the following we use natural units in which the speed of light \(c = 1\).

  2. 2.

    In this paper the delta function is defined as a scalar density of weight 1/2 such that \(\int d^4y\, f(y)\, \delta ^4(y - x) = f(x)\).

References

  1. C. Møller, Sur la dynamique des systèmes ayant un moment angulaire interne. Ann. Inst. Henri Poincaré 11, 251 (1949)

    MATH  Google Scholar 

  2. C. Møller, The Theory of Relativity (Clarendon Press, Oxford, 1952)

    MATH  Google Scholar 

  3. L.F. Costa, J. Natário, Center of mass, spin supplementary conditions, and the momentum of spinning particles. Fund. Theor. Phys. 179, 215 (2015)

    MathSciNet  MATH  Google Scholar 

  4. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  5. E. Hackmann, Geodesic equations and algebro-geometric methods (2015), arXiv:1506.00804v1 [gr–qc]

  6. R. Kerner, J.W. van Holten, R. Collistete jr., Relativistic epicycles: another approach to geodesic deviations. Class. Quantum Gravity 18, 4725 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Colistete Jr., C. Leygnac, R. Kerner, Higher-order geodesic deviations applied to the Kerr metric. Class. Quantum Gravity 19, 4573 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Ehlers, F.A.E. Pirani, A. Schild, The geometry of free fall and light propagation, in General Relativity: Papers in Honnor of J.L. Synge, ed. by L. O’Raifeartaigh (Oxford University Press, Oxford, 1972)

    Google Scholar 

  9. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman and Co., San Francisco, 1970)

    Google Scholar 

  10. P. Szekeres, The gravitational compass. J. Math. Phys. 6, 1387 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Puetzfeld, Y.N. Obukhov, Generalized deviation equation and determination of the curvature in general relativity. Phys. Rev. D 93, 044073 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Philipp, D. Puetzfeld, C. Lämmerzahl, On the applicability of the geodesic deviation equation in general relativity (2016), arXiv:1604.07173 [gr–qc]

  13. G. Koekoek, J.W. van Holten, Epicycles and Poincaré resonances in general relativity. Phys. Rev. D 83, 064041 (2011)

    Article  ADS  Google Scholar 

  14. G. Koekoek, J.W. van Holten, Geodesic deviations: modeling extreme mass-ratio systems and their gravitational waves. Class. Quantum Gravity 28, 225022 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Mathison, Neue Mechanik materieller Systeme. Acta Phys. Pol. 6, 163 (1937)

    MATH  Google Scholar 

  16. W. Tulczyjew, Motion of multipole particles in general relativity theory. Acta Phys. Pol. 18, 393 (1959)

    MathSciNet  MATH  Google Scholar 

  17. J. Steinhoff, Canonical formulation of spin in general relativity, Ph.D. thesis (Jena University) (2011), arXiv:1106.4203v1 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. G. d’Ambrosi, S.S. Kumar, J.W. van Holten, Covariant Hamiltonian spin dynamics in curved space-time. Phys. Lett. B 743, 478 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. J.W. van Holten, Spinning bodies in general relativity. Int. J. Geom. Methods Mod. Phys. 13, 1640002 (2016)

    Article  MathSciNet  Google Scholar 

  20. G. d’Ambrosi, S.S. Kumar, J.W. van Holten, J. van de Vis, Spinning bodies in curved space-time. Phys. Rev. D 93, 04451 (2016)

    Article  Google Scholar 

  21. J. Ehlers, E. Rudolph, Dynamics of extended bodies in general relativity: center-of-mass description and quasi-rigidity. Gen. Relativ. Gravit. 8, 197 (1977)

    Article  ADS  Google Scholar 

  22. R. Ruediger, Conserved quantities of spinning test particles in general relativity. Proc. R. Soc. Lond. A375, 185 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Khriplovich, A. Pomeransky, Equations of motion for spinning relativistic particle in external fields. Surv. High Energy Phys. 14, 145 (1999)

    Article  ADS  Google Scholar 

  24. J.W. van Holten, On the electrodynamics of spinning particles. Nucl. Phys. B 356, 3–26 (1991)

    Article  ADS  Google Scholar 

  25. J.W. van Holten, Relativistic time dilation in an external field. Phys. A 182, 279 (1992)

    Article  Google Scholar 

  26. G. d’Ambrosi, J.W. van Holten, Ballistic orbits in Schwarzschild space-time and gravitational waves from EMR binary mergers. Class. Quantum Gravity 32, 015012 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am indebted to Richard Kerner, Roberto Collistete jr., Gideon Koekoek, Giuseppe d’Ambrosi, S. Satish Kumar and Jorinde van de Vis for pleasant and informative discussions and collaboration on various aspects of the topics discussed. This work is supported by the Foundation for Fundamental Research of Matter (FOM) in the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Willem van Holten .

Editor information

Editors and Affiliations

Appendices

A Observer-Dependence of the Center of Mass in Relativity

To illustrate the observer-dependence of the center of mass of an extended body we consider a simple example: the motion of two equal test bodies revolving at constant angular velocity in Minkowski space on a circular orbit around an observer located in the origin of an inertial frame with cartesian co-ordinates (txyz). The plane of the orbit is taken to be the x-y-plane. In Fig. 3 we plot the projection of the world lines in the x-t-plane, represented by the two widely oscillating curves. At any moment the two test bodies are at equal distance to the observer and in opposite phase with respect to the origin. In this frame the center of mass is located at the origin \(x = 0\) and moves in a straight line along the t-axis in space-time.

A second observer in another inertial frame \((t',x',y',z')\) moving with constant velocity v in the positive x-direction has a different notion of simultaneity, as defined by the appropriate Lorentz transformation. The lines \(t' =\) constant are represented by the dashed slant lines parallel to the \(x'\)-axis. In the limit of large masses and slow rotation the center of mass CM\('\) with respect to this moving frame is located halfway between the masses at fixed time \(t'\). The world line of CM\('\) is now represented by the single curve oscillating at smaller amplitude around the line \(x = 0\) in the original frame. In fact for the observer in relative motion CM\('\) moves in the negative \(x'\)-direction while oscillating around the line \(x' = - vt'\).

Fig. 3
figure 3

The world line of the center of mass of two equal masses (e.g., a binary star system) in circular orbit with respect to a stationary observer on the axis of orbital angular momentum is represented by the line \(x = 0\). The world line of the center of mass with respect to an observer in an inertial frame \((t',x')\) moving at constant velocity along the x-axis is represented by the oscillating curve labeled CM\('\)

It is obvious that in curved space-time the notion of simultaneity is further complicated because of the non-existence of global inertial frames, resulting in additional distortions of the world line CM\('\) with respect to the world line in the local inertial frame (txyz) fixed to the center of rotation.

B Coefficients for Geodesic Deviations in Schwarzschild Geometry

The coefficients for the deviations of bound equatorial orbits w.r.t. parent circular orbits have been calculated for Schwarzschild space-time up to second order; with the restriction \(\rho ^r_1 = \rho ^r_2 = 0\) explained in the main text one gets the following results [6]:

a. Secular terms:

$$\begin{aligned} \begin{array}{ll} \rho _1^t = 0, &{} \displaystyle { \rho _2^t = \frac{3GM}{2R^{5/2}} \frac{R + GM}{\left( R - 3GM \right) ^{3/2}}, }\\ &{} \\ \rho _1^{\varphi } = 0, &{} \displaystyle { \rho _2^{\varphi } = \frac{3}{2R^{7/2}} \sqrt{\frac{GM}{R}} \frac{\left( R - 2GM \right) \left( R + GM \right) }{\left( R - 3GM \right) ^{3/2}}. } \end{array} \end{aligned}$$
(74)

b. First-order periodic terms:

$$\begin{aligned} \begin{array}{ll} \displaystyle { n_1^t = - \sqrt{\frac{4GM R}{ \left( R - 2GM \right) \left( R - 6GM \right) }}, }&{} n_2^t = 0, \\ &{} \\ \displaystyle { n_1^r = \sqrt{ 1 - \frac{2GM}{R}}, }&{} n_2^r = 0, \\ &{} \\ \displaystyle { n_1^{\varphi } = - \frac{2}{R} \sqrt{\frac{R - 2 GM}{R - 6GM}}, }&{} n_2^{\varphi } = 0. \end{array} \end{aligned}$$
(75)

c. Second order periodic terms:

$$\begin{aligned} \begin{array}{l} \displaystyle { m_2^t = \sqrt{\frac{GM}{R^2}}\, \frac{2R^2 - 15 GMR + 14 (GM)^2}{\left( R - 2GM \right) \left( R - 6 GM \right) ^{3/2}}, }\\ \\ \displaystyle { m_2^r = - \frac{1}{R^2}\, \frac{\left( R - 2GM \right) \left( R - 7 GM \right) }{R - 6 GM}, }\\ \\ \displaystyle { m_2^{\varphi } = \frac{1}{2 R^{5/2}}\, \frac{\left( R - 2 GM \right) \left( 5R - 32 GM \right) }{\left( R - 6GM \right) ^{3/2}}. } \end{array} \end{aligned}$$
(76)

d. Angular frequency:

$$\begin{aligned} \omega _0 = \sqrt{ \frac{GM}{R^3} \frac{R - 6 GM}{R - 3 GM}}, \quad \omega _1 = 0. \end{aligned}$$
(77)

In the non-restricted case with \(\rho _1^r \ne 0\) also the coefficients \(\rho _1^t\), \(\rho _1^{\varphi }\), \(n_2^{\mu }\) and \(\omega _1\) all become non-zero as well [13].

C Coefficients for Spinning World-Line Deviations in Schwarzschild Geometry

The first-order planar deviations of circular orbits of spinning particles for constant energy and total angular momentum in Schwarzschild space-time are expressed conveniently in terms of the following combinations of orbital and spin parameters [20]

$$\begin{aligned} \begin{array}{ll} \alpha = \displaystyle { \frac{2(R-GM)}{R(R-2GM)}\, u^t - \frac{2\varepsilon }{R-2GM}, }&{} \beta = \displaystyle { -\, \frac{GM u^\varphi }{mR}, }\\ &{} \\ \gamma = \displaystyle { \frac{2R-5GM}{R(R - 2GM)}\, u^\varphi + \frac{GM \eta }{R^3(R-2GM)}, }&{} \zeta = \displaystyle { -\, \frac{GM(R-2GM)}{mR^4}\, u^t, }\\ &{} \\ \kappa = \displaystyle { - \frac{2(R-2GM)}{R^2}\, \varepsilon , }&{} \lambda = \displaystyle { 2R u^{\varphi } - \frac{GM \eta }{R^2}, }\\ \end{array} \end{aligned}$$
(78)

and

$$\begin{aligned} \begin{array}{lll} \mu &{} = &{} \displaystyle { -\frac{2(R-3GM)}{R^3} +\, \frac{2(R-4GM)}{R^3}\, \varepsilon u^t +\, u^{\varphi \,2} + \frac{2GM}{R^3}\, \eta u^{\varphi }, }\\ &{} &{} \\ \nu &{} = &{} \displaystyle { \frac{(R-GM)(R - 3 GM)}{R-2GM}\, m u^{\varphi } + \frac{GM m\eta }{R^2(R-2GM)}, }\\ &{} &{} \\ \sigma &{} = &{} \displaystyle { \frac{(R- GM)(R-3GM)}{GM(R-2GM)}\, m u^t -\, \frac{mR\varepsilon }{GM}, }\\ &{} &{} \\ \chi &{} = &{} \displaystyle { \frac{(R^2-4GMR+5(GM)^2)}{GM(R-2GM)^2}\, m u^{\varphi } u^t -\, \frac{GM(3R-4GM)}{R^3(R-2GM)^2}\, m \eta u^t -\, \frac{m \varepsilon u^{\varphi }}{GM}. } \end{array} \end{aligned}$$
(79)

With these definitions the frequencies of the first-order planar deviations are

$$\begin{aligned} \begin{array}{l} \displaystyle { \omega ^2_{\pm } = \frac{1}{2} \left( A \pm \sqrt{A^2 - 4B} \right) , }\\ \\ A = \mu - \alpha \kappa - \beta \nu - \gamma \lambda - \zeta \sigma , \\ \\ B = \beta \left( \kappa \chi - \mu \nu + \gamma (\lambda \nu - \kappa \sigma ) \right) + \zeta \left( \lambda \chi - \mu \sigma - \alpha (\lambda \nu - \kappa \sigma ) \right) , \end{array} \end{aligned}$$
(80)

whilst the amplitudes are given by

$$\begin{aligned} \begin{array}{l} n^t_{\pm } = \lambda (\beta \gamma - \alpha \zeta ) + \beta (\omega ^2_{\pm } - \mu ), \\ \\ n^{\varphi }_{\pm } = - \kappa (\beta \gamma - \alpha \zeta ) + \zeta (\omega ^2_{\pm } - \mu ), \\ \\ n^r_{\pm } = \omega _{\pm } (\beta \kappa + \zeta \lambda ), \end{array} \end{aligned}$$
(81)

and

$$\begin{aligned} \begin{array}{l} \displaystyle { N^{tr}_{\pm } = \frac{m \omega _{\pm } R^2}{GM} \left( 1 - \frac{2GM}{R} \right) n^t_{\pm } + \frac{2mR}{GM} \left[ \left( 1 - \frac{GM}{R} \right) u^t - \varepsilon \right] n^r_{\pm }, }\\ \\ \displaystyle { N^{r\varphi }_{\pm } = - m \omega _{\pm } R n^{\varphi }_{\pm } - \frac{m}{R^2} \left( \eta + R^2 u^{\varphi } \right) n^r_{\pm }, }\\ \\ N^{t\varphi }_{\pm } = \omega ^2_{\pm } ( \omega _{\pm }^2 - \mu + \alpha \kappa + \gamma \lambda ). \end{array} \end{aligned}$$
(82)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Holten, JW. (2019). World-Line Perturbation Theory. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_12

Download citation

Publish with us

Policies and ethics