Skip to main content

Application of Microelectrode Array Approaches to Neurotoxicity Testing and Screening

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 22))

Abstract

Neurotoxicity can be defined by the ability of a drug or chemical to alter the physiology, biochemistry, or structure of the nervous system in a manner that may negatively impact the health or function of the individual. Electrophysiological approaches have been utilized to study the mechanisms underlying neurotoxic actions of drugs and chemicals for over 50 years, and in more recent decades, high-throughput patch-clamp approaches have been utilized by the pharmaceutical industry for drug development. The use of microelectrode array recordings to study neural network electrophysiology is a relatively newer approach, with commercially available systems becoming available only in the early 2000s. However, MEAs have been rapidly adopted as a useful approach for neurotoxicity testing. In this chapter, I will review the use of MEA approaches as they have been applied to the field of neurotoxicity testing, especially as they have been applied to the need to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. In addition, I will also identify challenges for the field that when addressed will improve the utility of MEA approaches for toxicity testing.

Preparation of this document has been funded by the U.S. Environmental Protection Agency. This document has been subjected to review by the National Health and Environmental Effects Research Laboratory (NHEERL) and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alloisio, S., Giussani, V., Nobile, M., Chiantore, M., & Novellino, A. (2016). Microelectrode array (MEA) platform as a sensitive tool to detect and evaluate Ostreopsis cf. ovata toxicity. Harmful Algae, 55, 230–237.

    Article  CAS  PubMed  Google Scholar 

  • Alloisio, S., Nobile, M., & Novellino, A. (2015). Multiparametric characterisation of neuronal network activity for in vitro agrochemical neurotoxicity assessment. Neurotoxicology, 48, 152–165.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, F. J., Hofmann, F., Bengtson, C. P., Wittmann, M., Vanhoutte, P., & Bading, H. (2005). Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis-dependent plasticity. The Journal of Physiology, 564(Pt 1), 3–19.

    Article  CAS  PubMed  Google Scholar 

  • Bader, B. M., Steder,A., Klein, A. B., Frølund, B., Schroeder. O. H. U., Jensen, A. A. (2017). Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings. PLoS One. 2017. 12(10):e0186147.

    Google Scholar 

  • Ball, K. R., Grant, C., Mundy, W. R., & Shafer, T. J. (2017). A multivariate extension of mutual information for growing neural networks. Neural Networks, 95, 29–43.

    Article  PubMed  Google Scholar 

  • Bal-Price, A., Hogberg, H. T., Crofton, K., Mardas Daneshian, M., FitzGerald, R. E., Fritsche, E., et al. (2018). Recommendation and application of in vitro alternative test readiness criteria: exemplified for developmental neurotoxicity (DNT). Accepted in ALTEX on February 23, 2018.

    Google Scholar 

  • Baskar, M. K., & Murthy, P. B. (2018). Acute in vitro neurotoxicity of some pyrethroids using microelectrode arrays. Toxicology In Vitro, 47, 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Biffi, E., Regalia, G., Menegon, A., Ferrigno, G., & Pedrocchi, A. (2013). The influence of neuronal density and maturation on network activity of hippocampal cell cultures: A methodological study. PLoS One, 8, e83899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyes, W. K. (1993). Sensory-evoked potentials: Measures of neurotoxicity. NIDA Research Monograph, 136, 63–98.

    CAS  PubMed  Google Scholar 

  • Boyes, W. K. (1994). Rat and human sensory evoked potentials and the predictability of human neurotoxicity from rat data. Neurotoxicology, 15, 569–578.

    CAS  PubMed  Google Scholar 

  • Bradley, J. A., Luithardt, H. H., Metea, M. R., & Strock, C. J. (2018). In vitro screening for seizure liability using microelectrode array technology. Toxicological Sciences, 163, 240.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J., Hall, D., Frank, C., Wallace, K., Mundy, W. R., & Shafer, T. J. (2016). Evaluation of a microelectrode array-based assay for neural network ontogeny using training set chemicals. Toxicological Sciences, 154, 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. P., Lynch, B., Curry-Chisolm, I., Shafer, T. J., & Strickland, J. D. (2017). Assaying spontaneous network activity and cellular viability using multi-well microelectrode arrays. Methods in Molecular Biology, 1601, 153–170.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, P., Cotterill, E., Morton, A., Grant, S. G. N., & Eglen, S. J. (2015). Quantitative differences in developmental profiles of spontaneous activity in cortical and hippocampal cultures. Neural Development, 10, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 1093, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Chiappalone, M., Massobrio, P., & Martinoia, S. (2008). Network plasticity in cortical assemblies. The European Journal of Neuroscience, 28, 221–237.

    Article  PubMed  Google Scholar 

  • Colombi, I., Mahajani, S., Frega, M., Gasparini, L., & Chiappalone, M. (2013). Effects of antiepileptic drugs on hippocampal neurons coupled to micro-electrode arrays. Frontiers in Neuroengineering, 6, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotterill, E., Hall, D., Wallace, K., Mundy, W. R., Eglen, S., & Shafer, T. J. (2016). Characterization of early cortical neural network development in multiwell microelectrode array plates. Journal of Biomolecular Screening, 21, 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofton, K. M., Mundy, W. R., Lein, P. J., Bal-Price, A., Coecke, S., Seiler, A. E., et al. (2011). Developmental neurotoxicity testing: Recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX, 28(1), 9–15.

    PubMed  Google Scholar 

  • Crofton, K. M., Mundy, W. R., & Shafer, T. J. (2012). Developmental neurotoxicity testing: A path forward. Congenital Anomalies, 52(3), 140–146.

    Article  PubMed  Google Scholar 

  • Defranchi, E., Novellino, A., Whelan, M., Vogel, S., Ramirez, T., van Ravenzwaay, B., et al. (2011). Feasibility assessment of micro-electrode chip assay as a method of detecting neurotoxicity in vitro. Frontiers in Neuroengineering, 4, 1–12.

    Article  CAS  Google Scholar 

  • Dingemans, M. M., Schütte, M. G., Wiersma, D. M., de Groot, A., van Kleef, R. G., Wijnolts, F. M., et al. (2016). Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. Neurotoxicology, 57, 194–202.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, D. J., Rutten, J. M., van den Berg, M., & Westerink, R. H. (2017). In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. Neurotoxicology, 59, 222–230.

    Article  CAS  PubMed  Google Scholar 

  • Eskes, C., Boström, A. C., Bowe, G., Coecke, S., Hartung, T., Hendriks, G., et al. (2017). Good cell culture practices and in vitro toxicology. Toxicology In Vitro, 45, 272–277.

    Article  CAS  PubMed  Google Scholar 

  • Eytan, D., & Marom, S. (2006). Dynamics and effective topology underlying synchronization in networks of cortical neurons. The Journal of Neuroscience, 26, 8465–8476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, C. L., Brown, J. P., Wallace, K., Mundy, W. R., & Shafer, T. J. (2017). Screening 86 compounds in the neural network formation assay: Developmental neurotoxicants disrupt formation of cortical networks on microelectrode arrays. Toxicological Sciences, 160, 121–135.

    Article  CAS  PubMed  Google Scholar 

  • Frank, C. L., Brown, J. P., Wallace, K., Wambaugh, J. F., Shah, I., & Shafer, T. J. (2018). Defining toxicological tipping points in neuronal network development. Toxicology and Applied Pharmacology, 354, 81.

    Article  CAS  PubMed  Google Scholar 

  • Frega, M., Pasquale, V., Tedesco, M., Marcoli, M., Contestabile, A., Nanni, M., et al. (2012). Cortical cultures coupled to micro-electrode arrays: A novel approach to perform in vitro excitotoxicity testing. Neurotoxicology and Teratology, 34, 116–127.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, M. E. (2000). In vitro systems as simulations of in vivo conditions: The study of cognition and synaptic plasticity in neurotoxicology. Annals of the New York Academy of Sciences, 919, 119–132.

    Article  CAS  PubMed  Google Scholar 

  • Gopal, K. V., & Gross, G. W. (1996). Auditory cortical neurons in vitro: Cell culture and multichannel extracellular recording. Acta Oto-Laryngologica, 116, 690–696.

    Article  CAS  PubMed  Google Scholar 

  • Gramowski, A., Flossdorf, J., Bhattacharya, K., Jonas, L., Lantow, M., Rahman, Q., et al. (2010). Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environmental Health Perspectives, 118, 1363–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368, 2167–2178.

    Article  CAS  PubMed  Google Scholar 

  • Grandjean, P., & Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. Lancet Neurology, 13, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, M. W., Xydas, D., Downes, J. H., Bucci, G., Becerra, V., Warwick, K., et al. (2013). Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays. BMC Neuroscience, 14, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrill, J. A., Freudenrich, T. F., Wallace, K., Ball, K., Shafer, T. J., & Mundy, W. R. (2018). Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicology and Applied Pharmacology, 354, 24–39.

    Article  CAS  PubMed  Google Scholar 

  • Harrill, J. A., Freudenrich, T. M., Robinette, B. L., & Mundy, W. R. (2011). Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicology and Applied Pharmacology, 256, 268–280.

    Article  CAS  PubMed  Google Scholar 

  • Hertz-Picciotto, I., Croen, L. A., Hansen, R., Jones, C. R., van de Water, J., & Pessah, I. N. (2006). The CHARGE study: An epidemiologic investigation of genetic and environmental factors contributing to autism. Environmental Health Perspectives, 114, 1119–1125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogberg, H. T., Sobanski, T., Novellino, A., Whelan, M., Weiss, D. G., & Bal-Price, A. K. (2011). Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: Evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology, 32, 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Holahan, M. R., & Smith, C. A. (2015). Phthalates and neurotoxic effects on hippocampal network plasticity. Neurotoxicology, 48, 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Hondebrink, L., Kasteel, E. E. J., Tukker, A. M., Wijnolts, F. M. J., Verboven, A. H. A., & Westerink, R. H. S. (2017). Neuropharmacological characterization of the new psychoactive substance methoxetamine. Neuropharmacology, 123, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Hondebrink, L., Verboven, A. H., Drega, W. S., Schmeink, S., de Groot, M. W., van Kleef, R. G., et al. (2016). Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. Neurotoxicology, 55, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T., Wang, Z., Wei, L., Kindy, M., Zheng, Y., Xi, T., et al. (2016). Microelectrode Array-evaluation of neurotoxic effects of magnesium as an implantable biomaterial. Journal of Materials Science and Technology, 32, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, A. F., Gross, G. W., Weiss, D. G., Schroeder, O. H., Gramowski, A., & Shafer, T. J. (2010). Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology, 31, 331–350.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, A. F. M., Strickland, J. D., Crofton, K. M., Gennings, C., & Shafer, T. J. (2017). Effects of an environmentally-relevant mixture of pyrethroid insecticides on spontaneous activity in primary cortical networks on microelectrode arrays. Neurotoxicology, 60, 234–239.

    Article  CAS  PubMed  Google Scholar 

  • Judson, R. S., Richard, A., Dix, D. J., Houck, K., Martin, M., Kavlock, R., et al. (2009). The toxicity data landscape for environmental chemicals. Environmental Health Perspectives, 117, 685–695.

    Article  CAS  PubMed  Google Scholar 

  • Karr, C. (2012). Children’s environmental health in agricultural settings. Journal of Agromedicine, 17, 127–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasteel, E. E., & Westerink, R. H. (2017). Comparison of the acute inhibitory effects of tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicology Letters, 270, 12–16.

    Article  CAS  PubMed  Google Scholar 

  • Lantz, S. R., Mack, C. M., Wallace, K., Keys, E. F., Shafer, T. J., & Casida, J. E. (2014). Glufosinate excitotoxicity mediated in part by N-methyl-D-aspartate receptor activation. Neurotoxicology, 45, 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Mack, C. M., Lin, B., Turner, J., Johnstone, A. F. M., Burgoon, L., & Shafer, T. J. (2014). Burst and principal components analysis of MEA data separates chemicals by class. Neurotoxicology, 40, 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Makris, S. L., Raffaele, K., Allen, S., Bowers, W. J., Haas, U., Alleva, E., et al. (2009). A retrospective performance assessment of the developmental neurotoxicity study in support of OECD Test Guideline 426. Environmental Health Perspectives, 117, 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J., & Nadon, R. (2006). Statistical practice in high-throughput screening data analysis. Nature Biotechnology, 24, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Massobrio, P., Tessadori, J., Chiappalone, M., & Ghirardi, M. (2015). In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays. Neural Plasticity, 2015, 196195.

    Article  PubMed  PubMed Central  Google Scholar 

  • McConnell, E. R., McClain, M. A., Ross, J., Lefew, W. R., & Shafer, T. J. (2012). Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology, 33, 1048–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, D. A., Carter, J. M., Johnstone, A. F., & Shafer, T. J. (2008). Pyrethroid modulation of spontaneous neuronal excitability and neurotransmission in hippocampal neurons in culture. Neurotoxicology, 29, 213–225.

    Article  CAS  PubMed  Google Scholar 

  • Mohana Krishnan, B., & Prakhya, B. M. (2016). In vitro evaluation of pyrethroid-mediated changes on neuronal burst parameters using microelectrode arrays. Neurotoxicology, 57, 270–281.

    Article  CAS  PubMed  Google Scholar 

  • Narahashi, T. (2002). Nerve membrane ion channels as the target site of insecticides. Mini Reviews in Medicinal Chemistry, 2, 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Newberry, K., Wang, S., Hoque, N., Kiss, L., Ahlijanian, M. K., Herrington, J., et al. (2016). Development of a spontaneously active dorsal root ganglia assay using multiwell multielectrode arrays. Journal of Neurophysiology, 115, 3217–3228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas, J., Hendriksen, P. J. M., van Kleef, R. G. D. M., de Groot, A., Bovee, T. F. H., Rietjens, I. M. C. M., et al. (2014). Detection of marine neurotoxins in food safety testing using a multielectrode array. Molecular Nutrition & Food Research, 58, 2369–2378.

    Article  CAS  Google Scholar 

  • Novellino, A., Scelfo, B., Palosaari, T., Price, A., Sobanski, T., Shafer, T., et al. (2011). Development of micro-electrode array based tests for neurotoxicity: Assessment of interlaboratory reproducibility with neuroactive chemicals. Frontiers in Neuroengineering, 4, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC. (2007). Toxicity testing in the twenty-first century: A vision and a strategy. Washington, DC: The National Academies Press.

    Google Scholar 

  • Odawara, A., Katoh, H., Matsuda, N., & Suzuki, I. (2016). Induction of long-term potentiation and depression phenomena in human induced pluripotent stem cell-derived cortical neurons. Biochemical and Biophysical Research Communications, 469(4), 856–862.

    Article  CAS  PubMed  Google Scholar 

  • Odawara, A., Saitoh, Y., Alhebshi, A. H., Gotoh, M., & Suzuki, I. (2014). Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochemical and Biophysical Research Communications, 443, 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  • Ogiue-Ikeda, M., Tanabe, N., Mukai, H., Hojo, Y., Murakami, G., Tsurugizawa, T., et al. (2008). Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. Brain Research Reviews, 57, 363–375.

    Article  CAS  PubMed  Google Scholar 

  • Otto, D., Hudnell, K., Boyes, W., Janssen, R., & Dyer, R. (1988). Electrophysiological measures of visual and auditory function as indices of neurotoxicity. Toxicology, 49, 205–218.

    Article  CAS  PubMed  Google Scholar 

  • Pamies, D., Bal-Price, A., Chesné, C., Coecke, S., Dinnyes, A., Eskes, C., et al. (2018). Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX, 35(3), 353–378.

    Article  PubMed  Google Scholar 

  • Pamies, D., Bal-Price, A., Simeonov, A., Tagle, D., Allen, D., Gerhold, D., et al. (2017). Good cell culture practice for stem cells and stem-cell-derived models. ALTEX, 34, 95–132.

    PubMed  Google Scholar 

  • Pamies, D., & Hartung, T. (2017). 21st century cell culture for 21st century toxicology. Chemical Research in Toxicology, 30, 43–52.

    Article  CAS  PubMed  Google Scholar 

  • Pancrazio, J. J., Gopal, K., Keefer, E. W., & Gross, G. W. (2014). Botulinum toxin suppression of CNS network activity in vitro. Journal of Toxicology, 2014, 732913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polańska, K., Jurewicz, J., & Hanke, W. (2012). Exposure to environmental and lifestyle factors and attention-deficit / hyperactivity disorder in children - a review of epidemiological studies. International Journal of Occupational Medicine and Environmental Health, 25, 330–355.

    Article  PubMed  Google Scholar 

  • Richard, A. M., Judson, R. S., Houck, K. A., Grulke, C. M., Volarath, P., Thillainadarajah, I., et al. (2016). The ToxCast chemical landscape: Paving the road to 21st century toxicology. Chemical Research in Toxicology, 29, 1225–1251.

    Article  CAS  PubMed  Google Scholar 

  • Robinette, B., Harrill, J., Mundy, W. R., & Shafer, T. J. (2011). In vitro assessment of developmental neurotoxicity: Use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Frontiers in Neuroengineering, 4, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salinas, E., & Sejnowski, T. J. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews. Neuroscience, 2, 539–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scelfo, B., Politi, M., Reniero, F., Palosaari, T., Whelan, M., & Zaldívar, J. M. (2012). Application of multielectrode array (MEA) chips for the evaluation of mixtures neurotoxicity. Toxicology, 299, 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Shafer, T. J., & Atchison, W. D. (1995). Methods for analysis of effects of neurotoxicants on synaptic transmission. In L. W. Chang & W. Slikker Jr. (Eds.), Neurotoxicology: Approaches and methodologies (pp. 157–181). New York: Academic Press.

    Chapter  Google Scholar 

  • Shafer, T. J., Rijal, S. O., & Gross, G. W. (2008). Complete inhibition of spontaneous activity in neuronal networks in vitro by deltamethrin and permethrin. Neurotoxicology, 29, 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Strickland, J. D., LeFew, W. R., Crooks, J., Hall, D., Ortenzio, J. N., Dreher, K., et al. (2016a). In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses. Toxicology, 355–356, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Strickland, J. D., Lefew, W. R., Crooks, J., Hall, D., Ortenzio, J. N., Dreher, K., et al. (2016b). In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. Nanotoxicology, 10, 619–628.

    Article  CAS  PubMed  Google Scholar 

  • Strickland, J. D., Martin, M. T., Richard, A. M., Houck, K. A., & Shafer, T. J. (2018). Screening the ToxCast phase II libraries for alterations in network function using cortical neurons grown on multi-well microelectrode array (mwMEA) plates. Archives of Toxicology, 92, 487–500.

    Article  CAS  PubMed  Google Scholar 

  • Su, J., & Jiang, C. (2006). Multicellular recordings of cultured brainstem neurons in microelectrode arrays. Cell and Tissue Research, 326, 25–33.

    Article  PubMed  Google Scholar 

  • Tukker, A. M., de Groot, M. W., Wijnolts, F. M., Kasteel, E. E., Hondebrink, L., & Westerink, R. H. (2016). Is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons? ALTEX, 33(3), 261–271.

    PubMed  Google Scholar 

  • Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., et al. (2009). Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Valdivia, P., Martin, M. T., Houck, K., Lefew, W. R., Ross, J., & Shafer, T. J. (2014). Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology, 44, 204–217.

    Article  CAS  PubMed  Google Scholar 

  • van Pelt, J., Vajda, I., Wolters, P. S., Corner, M. A., & Ramakers, G. J. A. (2005). Dynamics and plasticity in developing neuronal networks in vitro. In J. van Pelt, M. Kamermans, C. N. Levelt, A. van Ooyen, G. J. A. Ramakers, & P. R. Roelfsema (Eds.), Development, dynamics and pathology of neuronal networks: From molecules to functional circuits (Vol. 147, pp. 171–188). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Vassallo, A., Michela Chiappalone, M., De Camargo Lopes, R., Scelfo, B., Novellino, A., Defranchi, E., et al. (2017). A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology, 60, 280–292.

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar, D. A., Pine, J., & Potter, S. M. (2006a). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagenaar, D. A., Pine, J., & Potter, S. M. (2006b). Searching for plasticity in dissociated cortical cultures on multi-electrode arrays. Journal of Negative Results in Biomedicine, 5, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, K., Strickland, J. D., Valdivia, P., Mundy, W. R., & Shafer, T. J. (2015). A multiplexed assay for determination of neurotoxicant effects on spontaneous network activity and viability from microelectrode arrays. Neurotoxicology, 49, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, B., & Laties, V. C. (Eds.). (1975). Behavioral toxicology. New York: Springer. 469 pp.

    Google Scholar 

  • Xiang, G., Pan, L., Huang, L., Yu, Z., Song, X., Cheng, J., et al. (2007). Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Biosensors & Bioelectronics, 22, 2478–2484.

    Article  CAS  Google Scholar 

  • Ylä-Outinen, L., Heikkilä, J., Skottman, H., Suuronen, R., Aänismaa, R., & Narkilahti, S. (2010). Human cell-based micro electrode array platform for studying neurotoxicity. Frontiers in Neuroengineering, 3, 1–9.

    Article  CAS  Google Scholar 

  • Zwartsen, A., Hondebrink, L., & Westerink, R. H. (2018). Neurotoxicity screening of new psychoactive substances (NPS): Effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). Neurotoxicology, 66, 87–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Drs. Cina Mack and Andrew Johnstone for their insightful and helpful comments on a draft version of this chapter. In addition, I would like to thank the many students, postdocs, and laboratory staff who conducted the work served as the foundation for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Shafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shafer, T.J. (2019). Application of Microelectrode Array Approaches to Neurotoxicity Testing and Screening. In: Chiappalone, M., Pasquale, V., Frega, M. (eds) In Vitro Neuronal Networks. Advances in Neurobiology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-11135-9_12

Download citation

Publish with us

Policies and ethics