Skip to main content

Pericytes in the Gut

  • Chapter
  • First Online:
Pericyte Biology in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1122))

Abstract

This review chapter describes the current knowledge about the nature of pericytes in the gut, their interaction with endothelial cells in blood vessels, and their pathophysiological functions in the setting of chronic liver disease. In particular, it focuses on the role of these vascular cell types and related molecular signaling pathways in pathological angiogenesis associated with liver disease and in the establishment of the gut-vascular barrier and the potential implications in liver disease through the gut-liver axis.

Marta Ramirez and Nuria Pell are Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraldes JG, Iwakiri Y, Loureiro-Silva M et al (2006) Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Phys 290:G980–G987

    CAS  Google Scholar 

  • Alverdy JC (1990) Effects of glutamine-supplemented diets on immunology of the gut. JPEN 14:109S–113S

    Article  CAS  Google Scholar 

  • Armulik A, Genove G, Mäe M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  Google Scholar 

  • Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420

    Article  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  Google Scholar 

  • Bain CC, Mowat AM (2014) Macrophages in intestinal homeostasis and inflammation. Immunol Rev 260:102–117

    Article  CAS  Google Scholar 

  • Bava FA, Eliscovich C, Ferreira PG et al (2013) CPEB1 coordinates alternative 3’-UTR formation with translational regulation. Nature 495:121–125

    Article  CAS  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464

    Article  CAS  Google Scholar 

  • Bergers G, Song S, Meyer-Morse M et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  CAS  Google Scholar 

  • Bhat M, Arendt BA, Bhat V et al (2016) Implication of the intestinal microbiome in complications of cirrhosis. World J Hepatol 8:1128–1136

    Article  Google Scholar 

  • Calderone V, Gallego J, Fernandez-Miranda G et al (2016) Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of VEGF and angiogenesis in chronic liver disease. Gastroenterology 150:982–997

    Article  CAS  Google Scholar 

  • Chatterjee S (2014) Reversal of vasohibin-driven negative feedback loop of vascular endothelial growth factor/angiogenesis axis promises a novel antifibrotic therapeutic strategy for liver diseases. Hepatology 60:458–460

    Article  CAS  Google Scholar 

  • Coch L, Mejias M, Berzigotti A et al (2014) Disruption of negative feedback loop between vasohibin-1 and VEGF decreases portal pressure, angiogenesis and fibrosis in cirrhotic rats. Hepatology 60:633–647

    Article  CAS  Google Scholar 

  • Coffey JC, O’Leary DP (2016) The mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol 1:238–247

    Article  Google Scholar 

  • Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  Google Scholar 

  • Drake RL, Vogl AW, Mitchell A (2015) Gray’s anatomy for students, 3rd edn. Churchill Livingstone/Elsevier, Philadelphia, PA, pp 271–275

    Google Scholar 

  • Fernandez M (2015) Molecular pathophysiology of portal hypertension. Hepatology 61:1406–1415

    Article  Google Scholar 

  • Fernandez M, Vizzutti F, Garcia-Pagan JC et al (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 126:886–894

    Article  CAS  Google Scholar 

  • Fernandez M, Mejias M, Angermayr B et al (2005) Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol 43:98–103

    Article  CAS  Google Scholar 

  • Fernandez M, Mejias M, Garcia-Pras E et al (2007) Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 46:1208–1217

    Article  CAS  Google Scholar 

  • Fernandez M, Semela D, Bruix J et al (2009) Angiogenesis in liver disease. J Hepatol 50:604–620

    Article  CAS  Google Scholar 

  • Fernandez-Miranda G, Mendez R (2012) The CPEB-family of proteins, translational control in senescence and cancer. Ageing Res Rev 11:460–472

    Article  CAS  Google Scholar 

  • Gaengel K, Genove G, Armulik A et al (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    Article  CAS  Google Scholar 

  • Gallego J, Garcia-Pras E, Mejias M et al (2017) Therapeutic siRNA targeting endothelial KDR decreases portosystemic collateralization in portal hypertension. Sci Rep 7:14791

    Article  Google Scholar 

  • Garcia-Pras E, Gallego J, Coch L et al (2017) Role and therapeutic potential of vascular stem/progenitor cells in pathological neovascularisation during chronic portal hypertension. Gut 66:1306–1320

    Article  CAS  Google Scholar 

  • Garcia-Tsao G, Bosch J (2010) Management of varices and variceal hemorrhage in cirrhosis. N Engl J Med 362:823–832

    Article  CAS  Google Scholar 

  • Garcia-Tsao G, Sanyal AJ, Grace N et al (2007) Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 46:922–938

    Article  CAS  Google Scholar 

  • Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870

    Article  CAS  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  CAS  Google Scholar 

  • Granger DN, Holm L, Kvietys PR (2015) The gastrointestinal circulation: physiology and pathophysiology. In: Terjung R (ed) Comprehensive physiology. Wiley, Hoboken, NJ. https://doi.org/10.1002/cphy.c150007

    Chapter  Google Scholar 

  • Gray H, Lewis WH (2000) Gray’s anatomy of the human body, 20th edn. Bartleby, New York, NY

    Google Scholar 

  • Guarner C, Soriano G, Tomas A et al (1993) Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepathology 18:1139–1143

    Article  CAS  Google Scholar 

  • Gupta TK, Toruner M, Chung MK et al (1998) Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 28:926–931

    Article  CAS  Google Scholar 

  • Harper D, Chandler B (2016) Splanchnic circulation. BJA Education 16:66–71

    Article  Google Scholar 

  • Hirschi K, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    Article  CAS  Google Scholar 

  • Iwakiri Y, Shah V, Rockey DC (2014) Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 61:912–924

    Article  CAS  Google Scholar 

  • Jacobson ED (1982) Physiology of the mesenteric circulation. Physiologist 25:439–443

    CAS  PubMed  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    Article  CAS  Google Scholar 

  • Jankowski JA, Goodlad RA, Wright NA (1994) Maintenance of normal intestinal mucosa: function, structure, and adaptation. Gut 35(Suppl 1):S1–S4

    Article  CAS  Google Scholar 

  • Kachlik D, Baca V, Stingl J (2010) The spatial arrangement of the human large intestinal wall blood circulation. J Anat 216:335–343

    Article  Google Scholar 

  • Kelly-Goss MR, Sweat RS, Stapor PC et al (2014) Targeting pericytes for angiogenic therapies. Microcirculation 21:345–357

    Article  Google Scholar 

  • Kvietys PR (2010) The gastrointestinal circulation (chap. 2: anatomy). Morgan & Claypool Life Sciences, San Rafael, CA

    Google Scholar 

  • Liebner S, Corada M, Bangsow T et al (2008) Wnt/−catenin signaling controls development of the blood—brain barrier. J Cell Biol 183:409–417

    Article  CAS  Google Scholar 

  • Llovet JM, Bruix J (2009) Testing molecular therapies in hepatocellular carcinoma: the need for randomized phase II trials. J Clin Oncol 27:833–835

    Article  Google Scholar 

  • Maillo C, Martin J, Sebastian D et al (2017) Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress. Nat Cell Biol 19:94–105

    Article  CAS  Google Scholar 

  • Matheson PJ, Wilson MA, Garrison RN (2000) Regulation of intestinal blood flow. J Surg Res 93:182–196

    Article  CAS  Google Scholar 

  • Mejias M, Garcia-Pras E, Tiani C et al (2009) Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49:1245–1256

    Article  CAS  Google Scholar 

  • Mejias M, Coch L, Berzigotti A et al (2015) Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut 64:657–666

    Article  CAS  Google Scholar 

  • Mendez R, Hake LE, Andresson T et al (2000a) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-Mos mRNA. Nature 404:302–307

    Article  CAS  Google Scholar 

  • Mendez R, Murthy KG, Ryan K et al (2000b) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6:1253–1259

    Article  CAS  Google Scholar 

  • Ortiz-Zapater E, Pineda D, Martínez-Bosch N et al (2011) Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 18:83–90

    Article  Google Scholar 

  • Phillips GB, Schwartz R, Gabuzda GJ Jr et al (1952) The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med 247:239–246

    Article  CAS  Google Scholar 

  • Pinter M, Sieghart W, Reiberger T et al (2012) The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma-a pilot study. Aliment Pharmacol Ther 35:83–91

    Article  CAS  Google Scholar 

  • Pique M, Lopez JM, Foissac S et al (2008) A combinatorial code for CPE-mediated translational control. Cell 132:434–448

    Article  CAS  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  CAS  Google Scholar 

  • Reiberger T, Angermayr B, Schwabl P et al (2009) Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. J Hepatol 51:865–873

    Article  CAS  Google Scholar 

  • Reiberger T, Payer BA, Schwabl P et al (2013) Nebivolol treatment increases splanchnic blood flow and portal pressure in cirrhotic rats via modulation of nitric oxide signalling. Liver Int 33:561–568

    Article  CAS  Google Scholar 

  • Rockey DC, Chung JJ (1998) Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 114:344–351

    Article  CAS  Google Scholar 

  • Sarkissian M, Mendez R, Richter JD (2004) Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora a and glycogen synthase kinase-3. Genes Dev 18:48–61

    Article  CAS  Google Scholar 

  • Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146:1513–1524

    Article  CAS  Google Scholar 

  • Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet 371:838–851

    Article  CAS  Google Scholar 

  • Sharara AI, Rockey DC (2001) Gastroesophageal variceal hemorrhage. N Engl J Med 345:669–681

    Article  CAS  Google Scholar 

  • Spadoni I, Zagato E, Bertocchi A et al (2015) A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350:830–834

    Article  CAS  Google Scholar 

  • Spadoni I, Pietrelli A, Pesole G et al (2016) Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes 7:540–548

    Article  CAS  Google Scholar 

  • Sparks HV (2011) Effect of local metabolic factors on vascular smooth muscle. Supplement 7: handbook of physiology, the cardiovascular system, vascular smooth muscle, pp 475–513

    Google Scholar 

  • Stapor PC, Sweat RS, Dashti DC et al (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51:163–174

    Article  Google Scholar 

  • Thorburn T, Aali M, Lehmann C (2018) Immune response to systemic inflammation in the intestinal microcirculation. Front Biosci (Landmark Ed) 23:782–795

    Article  CAS  Google Scholar 

  • Tsiaoussis GI, Assimakopoulos SF, Tsamandas AC et al (2015) Intestinal barrier dysfunction in cirrhosis: current concepts in pathophysiology and clinical implications. World J Hepatol 7:2058–2068

    Article  Google Scholar 

  • Tugues S, Fernandez-Varo G, Muñoz-Luque J et al (2007) Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46:1919–1926

    Article  CAS  Google Scholar 

  • Usami M, Miyoshi M, Yamashita H (2015) Gut microbiota and host metabolism in liver cirrhosis. World J Gastroenterol 21:11597–11608

    Article  CAS  Google Scholar 

  • Van Steenkiste C, Geerts A, Vanheule E et al (2009) Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology 137:2112–2124

    Article  Google Scholar 

  • Vespasiani-Gentilucci U, Rombouts K (2015) Boosting pigment epithelial-derived factor: a promising approach for the treatment of early portal hypertension. Gut 64:523–524

    Article  CAS  Google Scholar 

  • Volta U, Bonazzi C, Bianchi FB et al (1987) IgA antibodies to dietary antigens in liver cirrhosis. Ric Clin Lab 17:235–242

    CAS  PubMed  Google Scholar 

Download references

Grant Support

This is supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO; SAF2014–55473-R and BES2015–071399); the Spanish Ministry of Science, Innovation and Universities (SAF2017–87988-R); the European Union FEDER funds; the Spanish Association Against Cancer (AECC); the Worldwide Cancer Research Foundation; and the CERCA Programme (Generalitat de Catalunya, Spain). CIBERehd is an initiative from the Instituto de Salud Carlos III.

Disclosures All authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramirez, M., Pell, N., Mejias, M., Fernandez, M. (2019). Pericytes in the Gut. In: Birbrair, A. (eds) Pericyte Biology in Different Organs. Advances in Experimental Medicine and Biology, vol 1122. Springer, Cham. https://doi.org/10.1007/978-3-030-11093-2_5

Download citation

Publish with us

Policies and ethics