Skip to main content

Drugs for Soft Tissue Autoimmune Disorders

  • Chapter
  • First Online:
Nijkamp and Parnham's Principles of Immunopharmacology

Abstract

Crohn’s disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel diseases (IBD). The exact cause for IBD is unknown; however, a genetic predisposition seems to lead to a disturbed immune response in the gut towards the commensal flora which results in intestinal inflammation [1]. Both types of IBD show relapsing courses and mainly affect children and young adults, although a second peak of disease onset can be observed in ages 50–70 years. The first description of ulcerative colitis dates back to the nineteenth century when Sir Samuel Wilks described an idiopathic colitis distinct from epidemic dysentery [2]. However, the most recognized paper was published in 1932 by Crohn, Ginzburg and Oppenheimer on “Regional Enteritis, a pathological and clinical entity”. The description was based on the examination of 14 cases and sums up the presentation of patients with CD in a way that is still current knowledge [3].

Final manuscript submitted on September 25, 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Banerjee AK. Sir Samuel Wilks: a founding father of clinical science. J R Soc Med. 1991;84:44–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crohn BB, Ginzburg L, Oppenheimer GD. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. JAMA. 1984;251:73–9.

    Article  CAS  PubMed  Google Scholar 

  4. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  PubMed  Google Scholar 

  5. Bengtson MB, Solberg C, Aamodt G, et al. Familial aggregation in Crohn’s disease and ulcerative colitis in a Norwegian population-based cohort followed for ten years. J Crohn’s Colitis. 2009;3:92–9.

    Article  Google Scholar 

  6. Ng SC, Woodrow S, Patel N, Subhani J, Harbord M. Role of genetic and environmental factors in British twins with inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:725–36.

    Article  PubMed  Google Scholar 

  7. Spehlmann ME, Begun AZ, Burghardt J, Lepage P, Raedler A, Schreiber S. Epidemiology of inflammatory bowel disease in a German twin cohort: results of a nationwide study. Inflamm Bowel Dis. 2008;14:968–76.

    Article  PubMed  Google Scholar 

  8. Farmer RG, Michener WM, Mortimer EA. Studies of family history among patients with inflammatory bowel disease. Clin Gastroenterol. 1980;9:271–7.

    CAS  PubMed  Google Scholar 

  9. Monsen U, Brostrom O, Nordenvall B, Sorstad J, Hellers G. Prevalence of inflammatory bowel disease among relatives of patients with ulcerative colitis. Scand J Gastroenterol. 1987;22:214–8.

    Article  CAS  PubMed  Google Scholar 

  10. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF. A population-based case control study of potential risk factors for IBD. Am J Gastroenterol. 2006;101:993–1002.

    Article  PubMed  Google Scholar 

  13. Lopez-Serrano P, Perez-Calle JL, Perez-Fernandez MT, Fernandez-Font JM, Boixeda de Miguel D, Fernandez-Rodriguez CM. Environmental risk factors in inflammatory bowel diseases. Investigating the hygiene hypothesis: a Spanish case-control study. Scand J Gastroenterol. 2010;45:1464–71.

    Article  PubMed  Google Scholar 

  14. Damas OM, Avalos DJ, Palacio AM, et al. Inflammatory bowel disease is presenting sooner after immigration in more recent US immigrants from Cuba. Aliment Pharmacol Ther. 2017;46:303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kornfeld D, Ekbom A, Ihre T. Survival and risk of cholangiocarcinoma in patients with primary sclerosing cholangitis. A population-based study. Scand J Gastroenterol. 1997;32:1042–5.

    Article  CAS  PubMed  Google Scholar 

  17. Canavan C, Abrams KR, Mayberry J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther. 2006;23:1097–104.

    Article  CAS  PubMed  Google Scholar 

  18. Peyrin-Biroulet L, Loftus EV Jr, Colombel JF, Sandborn WJ. Long-term complications, extraintestinal manifestations, and mortality in adult Crohn’s disease in population-based cohorts. Inflamm Bowel Dis. 2011;17:471–8.

    Article  PubMed  Google Scholar 

  19. Nagao-Kitamoto H, Kamada N. Host-microbial cross-talk in inflammatory Bowel disease. Immune Netw. 2017;17(1):12.

    Article  Google Scholar 

  20. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bloom SM, Bijanki VN, Nava GM, et al. Commensal bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011;9:390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buisine MP, Desreumaux P, Debailleul V, et al. Abnormalities in mucin gene expression in Crohn’s disease. Inflamm Bowel Dis. 1999;5:24–32.

    Article  CAS  PubMed  Google Scholar 

  23. Van Klinken BJ, Van der Wal JW, Einerhand AW, Buller HA, Dekker J. Sulphation and secretion of the predominant secretory human colonic mucin MUC2 in ulcerative colitis. Gut. 1999;44:387–93.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307:254–8.

    Article  CAS  PubMed  Google Scholar 

  26. Aad G, Abbott B, Abdallah J, et al. Measurement of the W+ W− cross section in sqrt(s) = 7 TeV pp collisions with ATLAS. Phys Rev Lett. 2011;107:041802.

    Article  CAS  PubMed  Google Scholar 

  27. Baumgart DC, Metzke D, Guckelberger O, et al. Aberrant plasmacytoid dendritic cell distribution and function in patients with Crohn’s disease and ulcerative colitis. Clin Exp Immunol. 2011;166:46–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baumgart DC, Metzke D, Schmitz J, et al. Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut. 2005;54:228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baumgart DC, Thomas S, Przesdzing I, et al. Exaggerated inflammatory response of primary human myeloid dendritic cells to lipopolysaccharide in patients with inflammatory bowel disease. Clin Exp Immunol. 2009;157:423–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–64.

    Article  CAS  PubMed  Google Scholar 

  31. Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke JD. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol. 2008;1(Suppl 1):S58–61.

    Article  CAS  PubMed  Google Scholar 

  32. Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baert F, Moortgat L, Van Assche G, et al. Mucosal healing predicts sustained clinical remission in patients with early-stage Crohn’s disease. Gastroenterology. 2010;138:463–8; quiz e10–1.

    Article  PubMed  Google Scholar 

  34. Manns MP, Lohse AW, Vergani D. Autoimmune hepatitis—update 2015. J Hepatol. 2015;62:S100–11.

    Article  PubMed  Google Scholar 

  35. Johnson PJ, McFarlane IG. Meeting report: International Autoimmune Hepatitis Group. Hepatology. 1993;18:998–1005.

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez F, Berg PA, Bianchi FB, et al. International Autoimmune Hepatitis Group report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999;31:929–38.

    Article  CAS  PubMed  Google Scholar 

  37. Hennes EM, Zeniya M, Czaja AJ, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48:169–76.

    Article  PubMed  Google Scholar 

  38. Tiegs G, Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun. 2010;34:1–6.

    Article  CAS  PubMed  Google Scholar 

  39. van Gerven NM, Verwer BJ, Witte BI, et al. Relapse is almost universal after withdrawal of immunosuppressive medication in patients with autoimmune hepatitis in remission. J Hepatol. 2013;58:141–7.

    Article  PubMed  CAS  Google Scholar 

  40. Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med. 1971;40:159–85.

    Article  CAS  PubMed  Google Scholar 

  41. Soloway RD, Summerskill WH, Baggenstoss AH, et al. Clinical, biochemical, and histological remission of severe chronic active liver disease: a controlled study of treatments and early prognosis. Gastroenterology. 1972;63:820–33.

    Article  CAS  PubMed  Google Scholar 

  42. Murray-Lyon IM, Stern RB, Williams R. Controlled trial of prednisone and azathioprine in active chronic hepatitis. Lancet. 1973;1:735–7.

    Article  CAS  PubMed  Google Scholar 

  43. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–213.

    Article  CAS  PubMed  Google Scholar 

  44. Gleeson D, Heneghan MA. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis. Gut. 2011;60:1611–29.

    Article  CAS  PubMed  Google Scholar 

  45. Schramm C, Weiler-Normann C, Wiegard C, Hellweg S, Muller S, Lohse AW. Treatment response in patients with autoimmune hepatitis. Hepatology. 2010;52:2247–8.

    Article  PubMed  Google Scholar 

  46. Muratori L, Muratori P, Lanzoni G, Ferri S, Lenzi M. Application of the 2010 American Association for the study of liver diseases criteria of remission to a cohort of Italian patients with autoimmune hepatitis. Hepatology. 2010;52:1857; author reply –8.

    Article  PubMed  Google Scholar 

  47. Manns MP, Woynarowski M, Kreisel W, et al. Budesonide induces remission more effectively than prednisone in a controlled trial of patients with autoimmune hepatitis. Gastroenterology. 2010;139:1198–206.

    Article  CAS  PubMed  Google Scholar 

  48. Peiseler M, Liebscher T, Sebode M, et al. Efficacy and limitations of budesonide as a second-line treatment for patients with autoimmune hepatitis. Clin Gastroenterol Hepatol. 2018;16(2):260–267.e1.

    Article  CAS  PubMed  Google Scholar 

  49. Hubener S, Oo YH, Than NN, et al. Efficacy of 6-mercaptopurine as second-line treatment for patients with autoimmune hepatitis and azathioprine intolerance. Clin Gastroenterol Hepatol. 2016;14:445–53.

    Article  PubMed  CAS  Google Scholar 

  50. Hoeltzenbein M, Elefant E, Vial T, et al. Teratogenicity of mycophenolate confirmed in a prospective study of the European Network of Teratology Information Services. Am J Med Genet A. 2012;158a:588–96.

    Article  PubMed  CAS  Google Scholar 

  51. Than NN, Wiegard C, Weiler-Normann C, et al. Long-term follow-up of patients with difficult to treat type 1 autoimmune hepatitis on Tacrolimus therapy. Scand J Gastroenterol. 2016;51:329–36.

    Article  CAS  PubMed  Google Scholar 

  52. Fernandes NF, Redeker AG, Vierling JM, Villamil FG, Fong TL. Cyclosporine therapy in patients with steroid resistant autoimmune hepatitis. Am J Gastroenterol. 1999;94:241–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ytting H, Larsen FS. Everolimus treatment for patients with autoimmune hepatitis and poor response to standard therapy and drug alternatives in use. Scand J Gastroenterol. 2015;50:1025–31.

    Article  CAS  PubMed  Google Scholar 

  54. Sebode MHJ, Vergani D, et al. Autoimmune hepatitis: from current knowledge and clinical practice to future research agenda. Liver Int. 2018;38(1):15–22.

    Article  PubMed  Google Scholar 

  55. Weiler-Normann C, Schramm C, Quaas A, et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. J Hepatol. 2013;58:529–34.

    Article  CAS  PubMed  Google Scholar 

  56. Bjornsson ES, Gunnarsson BI, Grondal G, et al. Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2015;13:602–8.

    Article  CAS  PubMed  Google Scholar 

  57. Burak KW, Swain MG, Santodomingo-Garzon T, et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol. 2013;27:273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. New Engl J Med. 2018;378:169–80.

    Article  CAS  PubMed  Google Scholar 

  59. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13:25–36.

    Article  CAS  PubMed  Google Scholar 

  60. Charcot. Lecons sur les maladies du systeme nerveux faites a la Salpetrière. 1880.

    Google Scholar 

  61. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. New Engl J Med. 1998;338:278–85.

    Article  CAS  PubMed  Google Scholar 

  62. Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120:393–9.

    Article  PubMed  Google Scholar 

  63. Bo L, Geurts JJ, Ravid R, Barkhof F. Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosis. Neuropathol Appl Neurobiol. 2004;30:106–17.

    Article  CAS  PubMed  Google Scholar 

  64. Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.

    Article  PubMed  Google Scholar 

  65. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.

    Article  CAS  PubMed  Google Scholar 

  66. Greenfield AL, Hauser SL. B-Cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018;83:13–26.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Comi G, Filippi M, Barkhof F, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet. 2001;357:1576–82.

    Article  CAS  PubMed  Google Scholar 

  68. Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1503–11.

    Article  CAS  PubMed  Google Scholar 

  69. Jacobs LD, Beck RW, Simon JH, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. New Engl J Med. 2000;343:898–904.

    Article  CAS  PubMed  Google Scholar 

  70. Kappos L, Polman CH, Freedman MS, et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 2006;67:1242–9.

    Article  CAS  PubMed  Google Scholar 

  71. Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Hand Clin. 2015;4:329–33.

    Google Scholar 

  72. Kaunzner UW, Al-Kawaz M, Gauthier SA. Defining disease activity and response to therapy in MS. Curr Treat Options Neurol. 2017;19:20.

    Article  PubMed  Google Scholar 

  73. Salazopyrin NS. a new sulfanilamide preparation: A. Therapeutic results in rheumatic polyarthritis. B. Therapeutic results in ulcerative colitis. C. Toxic manifestations in treatment with sulfanilamide preparation. Acta Med Scand. 1942;110:557–90.

    Google Scholar 

  74. Egan LJ, Mays DC, Huntoon CJ, et al. Inhibition of interleukin-1-stimulated NF-kappaB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J Biol Chem. 1999;274:26448–53.

    Article  CAS  PubMed  Google Scholar 

  75. Bantel H, Berg C, Vieth M, Stolte M, Kruis W, Schulze-Osthoff K. Mesalazine inhibits activation of transcription factor NF-kappaB in inflamed mucosa of patients with ulcerative colitis. Am J Gastroenterol. 2000;95:3452–7.

    CAS  PubMed  Google Scholar 

  76. Allgayer H. Review article: mechanisms of action of mesalazine in preventing colorectal carcinoma in inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18(Suppl 2):10–4.

    Article  CAS  PubMed  Google Scholar 

  77. Velayos FS, Terdiman JP, Walsh JM. Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am J Gastroenterol. 2005;100:1345–53.

    Article  CAS  PubMed  Google Scholar 

  78. Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972;181:555–62.

    CAS  PubMed  Google Scholar 

  79. Myers B, Evans DN, Rhodes J, et al. Metabolism and urinary excretion of 5-amino salicylic acid in healthy volunteers when given intravenously or released for absorption at different sites in the gastrointestinal tract. Gut. 1987;28:196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Narayan N, Rigby S, Carlucci F. Sulfasalazine induced immune thrombocytopenia in a patient with rheumatoid arthritis. Clin Rheumatol. 2017;36:477–9.

    Article  PubMed  Google Scholar 

  81. Marteau P, Probert CS, Lindgren S, et al. Combined oral and enema treatment with Pentasa (mesalazine) is superior to oral therapy alone in patients with extensive mild/moderate active ulcerative colitis: a randomised, double blind, placebo controlled study. Gut. 2005;54:960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Safdi M, DeMicco M, Sninsky C, et al. A double-blind comparison of oral versus rectal mesalamine versus combination therapy in the treatment of distal ulcerative colitis. Am J Gastroenterol. 1997;92:1867–71.

    CAS  PubMed  Google Scholar 

  83. Burchenal JH, Murphy ML, Ellison RR, et al. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood. 1953;8:965–99.

    Article  CAS  PubMed  Google Scholar 

  84. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol. 1992;43:329–39.

    Article  CAS  PubMed  Google Scholar 

  85. Thomas CW, Myhre GM, Tschumper R, et al. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther. 2005;312:537–45.

    Article  CAS  PubMed  Google Scholar 

  86. Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cuffari C, Seidman EG, Latour S, Theoret Y. Quantitation of 6-thioguanine in peripheral blood leukocyte DNA in Crohn’s disease patients on maintenance 6-mercaptopurine therapy. Can J Physiol Pharmacol. 1996;74:580–5.

    Article  CAS  PubMed  Google Scholar 

  88. Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut. 2001;48:642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Roblin X, Serre-Debeauvais F, Phelip JM, et al. 6-Tioguanine monitoring in steroid-dependent patients with inflammatory bowel diseases receiving azathioprine. Aliment Pharmacol Ther. 2005;21:829–39.

    Article  CAS  PubMed  Google Scholar 

  90. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology. 2000;118:705–13.

    Article  CAS  PubMed  Google Scholar 

  91. Hindorf U, Lindqvist M, Peterson C, et al. Pharmacogenetics during standardised initiation of thiopurine treatment in inflammatory bowel disease. Gut. 2006;55:1423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32:651–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989;46:149–54.

    Article  CAS  PubMed  Google Scholar 

  94. Van Loon JA, Weinshilboum RM. Thiopurine methyltransferase biochemical genetics: human lymphocyte activity. Biochem Genet. 1982;20:637–58.

    Article  PubMed  Google Scholar 

  95. Szumlanski CL, Honchel R, Scott MC, Weinshilboum RM. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics. 1992;2:148–59.

    Article  CAS  PubMed  Google Scholar 

  96. Ansari A, Patel N, Sanderson J, O'Donohue J, Duley JA, Florin TH. Low-dose azathioprine or mercaptopurine in combination with allopurinol can bypass many adverse drug reactions in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2010;31:640–7.

    Article  CAS  PubMed  Google Scholar 

  97. Dhaliwal HK, Anderson R, Thornhill EL, et al. Clinical significance of azathioprine metabolites for the maintenance of remission in autoimmune hepatitis. Hepatology. 2012;56:1401–8.

    Article  CAS  PubMed  Google Scholar 

  98. Khan N, Abbas AM, Lichtenstein GR, Loftus EV Jr, Bazzano LA. Risk of lymphoma in patients with ulcerative colitis treated with thiopurines: a nationwide retrospective cohort study. Gastroenterology. 2013;145:1007–15.e3.

    Article  CAS  PubMed  Google Scholar 

  99. Beaugerie L, Brousse N, Bouvier AM, et al. Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: a prospective observational cohort study. Lancet. 2009;374:1617–25.

    Article  CAS  PubMed  Google Scholar 

  100. Lennard L, Thomas S, Harrington CI, Maddocks JL. Skin cancer in renal transplant recipients is associated with increased concentrations of 6-thioguanine nucleotide in red blood cells. Br J Dermatol. 1985;113:723–9.

    Article  CAS  PubMed  Google Scholar 

  101. Gisbert JP, Gomollon F. Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am J Gastroenterol. 2008;103:1783–800.

    Article  PubMed  Google Scholar 

  102. Seiderer J, Zech CJ, Reinisch W, et al. A multicenter assessment of liver toxicity by MRI and biopsy in IBD patients on 6-thioguanine. J Hepatol. 2005;43:303–9.

    Article  CAS  PubMed  Google Scholar 

  103. Kodama S, Davis M, Faustman DL. The therapeutic potential of tumor necrosis factor for autoimmune disease: a mechanistically based hypothesis. Cell Mol Life Sci. 2005;62:1850–62.

    Article  CAS  PubMed  Google Scholar 

  104. Peschon JJ, Torrance DS, Stocking KL, et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol. 1998;160:943–52.

    CAS  PubMed  Google Scholar 

  105. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thalayasingam N, Isaacs JD. Anti-TNF therapy. Best Pract Res Clin Rheumatol. 2011;25:549–67.

    Article  CAS  PubMed  Google Scholar 

  107. Maneiro JR, Salgado E, Gomez-Reino JJ. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated Inflammatory conditions: systematic review and meta-analysis. JAMA Intern Med. 2013;173:1416–28.

    Article  CAS  PubMed  Google Scholar 

  108. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348:601–8.

    Article  CAS  PubMed  Google Scholar 

  109. Farrell RJ, Alsahli M, Jeen YT, Falchuk KR, Peppercorn MA, Michetti P. Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn’s disease: a randomized controlled trial. Gastroenterology. 2003;124:917–24.

    Article  CAS  PubMed  Google Scholar 

  110. Targownik LE, Bernstein CN. Infectious and malignant complications of TNF inhibitor therapy in IBD. Am J Gastroenterol. 2013;108:1835–42; quiz 43.

    Article  CAS  PubMed  Google Scholar 

  111. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–40.

    Article  CAS  PubMed  Google Scholar 

  112. Nanavati SA, Ergun GA, Schwartz JT. Avoiding infliximab in the treatment of Crohn’s disease in patients with multiple sclerosis. Am J Gastroenterol. 2003;98:2333–4.

    Article  PubMed  Google Scholar 

  113. Gisbert JP, Chaparro M. Safety of anti-TNF agents during pregnancy and breastfeeding in women with inflammatory bowel disease. Am J Gastroenterol. 2013;108:1426–38.

    Article  CAS  PubMed  Google Scholar 

  114. Briskin M, Winsor-Hines D, Shyjan A, et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol. 1997;151:97–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Havrdova E, Galetta S, Hutchinson M, et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 2009;8:254–60.

    Article  PubMed  Google Scholar 

  116. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.

    Article  CAS  PubMed  Google Scholar 

  117. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354:911–23.

    Article  CAS  PubMed  Google Scholar 

  118. Sandborn WJ, Colombel JF, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25.

    Article  CAS  PubMed  Google Scholar 

  119. Du Pasquier RA, Autissier P, Zheng Y, Jean-Jacques J, Koralnik IJ. Presence of JC virus-specific CTL in the cerebrospinal fluid of PML patients: rationale for immune-based therapeutic strategies. AIDS. 2005;19:2069–76.

    Article  PubMed  Google Scholar 

  120. Parikh A, Leach T, Wyant T, et al. Vedolizumab for the treatment of active ulcerative colitis: a randomized controlled phase 2 dose-ranging study. Inflamm Bowel Dis. 2012;18:1470–9.

    Article  PubMed  Google Scholar 

  121. Feagan BG, Rubin DT, Danese S, et al. Efficacy of vedolizumab induction and maintenance therapy in patients with ulcerative colitis, regardless of prior exposure to tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2017;15:229–39 e5.

    Article  CAS  PubMed  Google Scholar 

  122. Colombel JF, Sands BE, Rutgeerts P, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2017;66:839–51.

    Article  CAS  PubMed  Google Scholar 

  123. Rutgeerts PJ, Fedorak RN, Hommes DW, et al. A randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut. 2013;62:1122–30.

    Article  CAS  PubMed  Google Scholar 

  124. Benson JM, Sachs CW, Treacy G, et al. Therapeutic targeting of the IL-12/23 pathways: generation and characterization of ustekinumab. Nat Biotechnol. 2011;29:615–24.

    Article  CAS  PubMed  Google Scholar 

  125. Frieder J, Kivelevitch D, Haugh I, Watson I, Menter A. Anti-IL-23 and anti-IL-17 biologic agents for the treatment of immune-mediated inflammatory conditions. Clin Pharmacol Ther. 2018;103(1):88–101.

    Article  CAS  PubMed  Google Scholar 

  126. D'Angelo S, Tramontano G, Gilio M, Leccese P, Olivieri I. Review of the treatment of psoriatic arthritis with biological agents: choice of drug for initial therapy and switch therapy for non-responders. Open Access Rheumatol. 2017;9:21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yong VW, Chabot S, Stuve O, Williams G. Interferon beta in the treatment of multiple sclerosis: mechanisms of action. Neurology. 1998;51:682–9.

    Article  CAS  PubMed  Google Scholar 

  128. Jacobs LD. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis (vol. 39, p. 285, 1996). Ann Neurol. 1996;40:480.

    Article  Google Scholar 

  129. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352:1498–504.

    Article  Google Scholar 

  130. Kappos L, Polman C, Freedman MS, et al. Betaferon (R) in newly emerging multiple sclerosis for initial treatment (BENEFIT): clinical results. Mult Scler. 2005;11:S10.

    Google Scholar 

  131. Secondary Progressive Efficacy Clinical Trial of Recombinant Interferon-Beta-1a in MS (SPECTRIMS) Study Group. Randomized controlled trial of interferon- beta-1a in secondary progressive MS: clinical results. Neurology. 2001;56:1496–504.

    Article  Google Scholar 

  132. European Study Group. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet. 1998;352:1491–7.

    Article  Google Scholar 

  133. Jacobs LD, Beck R, Simon JH, et al. Results of a phase III trial of interferon beta-1a treatment in patients at high risk of developing multiple sclerosis. Neurology. 2000;54:2351.

    Article  Google Scholar 

  134. Ross C, Clemmesen KM, Svenson M, et al. Immunogenicity of interferon-beta in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Ann Neurol. 2000;48:706–12.

    Article  CAS  PubMed  Google Scholar 

  135. Bertolotto A, Sala A, Malucchi S, et al. Biological activity of interferon betas in patients with multiple sclerosis is affected by treatment regimen and neutralising antibodies. J Neurol Neurosurg Psychiatry. 2004;75:1294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Teitelbaum D, Meshorer A, Hirshfeld T, Arnon R, Sela M. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol. 1971;1:242–8.

    Article  CAS  PubMed  Google Scholar 

  137. Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev. 2013;12:543–53.

    Article  CAS  PubMed  Google Scholar 

  138. Johnson KP, Brooks BR, Cohen JA, et al. Copolymer-1 reduces relapse rate and improves disability in relapsing-remitting multiple-sclerosis – results of a phase-III multicenter, double-blind, placebo-controlled trial. Neurology. 1995;45:1268–76.

    Article  CAS  PubMed  Google Scholar 

  139. Comi G, Filippi M, Wolinsky JS, Aceta ECG. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol. 2001;49:290–7.

    Article  CAS  PubMed  Google Scholar 

  140. Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R, Grp GS. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013;73:705–13.

    Article  CAS  PubMed  Google Scholar 

  141. Ford C, Goodman AD, Johnson K, et al. Continuous long-term immunomodulatory therapy in relapsing multiple sclerosis: results from the 15-year analysis of the US prospective open-label study of glatiramer acetate. Mult Scler. 2010;16:342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Miller A, Spada V, Beerkircher D, Kreitman RR. Long-term (up to 22 years), open-label, compassionate-use study of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler. 2008;14:494–9.

    Article  PubMed  Google Scholar 

  143. Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs glatiramer acetate in relapsing MS disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7:903–14.

    Article  CAS  PubMed  Google Scholar 

  144. O’Connor P, Filippi M, Arnason B. 250 μg or 500 μg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8:889–981.

    Article  PubMed  CAS  Google Scholar 

  145. Herbstritt S, Langer-Gould A, Rockhoff M, et al. Glatiramer acetate during early pregnancy: a prospective cohort study. Mult Scler J. 2016;22:810–6.

    Article  CAS  Google Scholar 

  146. Sandberg-Wollheim M, Neudorfer O, Grinspan A, et al. Pregnancy outcomes from the branded glatiramer acetate pregnancy database. Int J MS Care. 2018;20:9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Giannini M, Portaccio E, Ghezzi A, et al. Pregnancy and fetal outcomes after glatiramer acetate exposure in patients with multiple sclerosis: a prospective observational multicentric study. BMC Neurol. 2012;12:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev. 2003;4:397–407.

    Article  CAS  Google Scholar 

  149. Pelletier D, Hafler DA. Fingolimod for multiple sclerosis. N Engl J Med. 2012;366:339–47.

    Article  CAS  PubMed  Google Scholar 

  150. Kappos L, Radue EW, O'Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. New Engl J Med. 2010;362:387–401.

    Article  CAS  PubMed  Google Scholar 

  151. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.

    Article  CAS  PubMed  Google Scholar 

  152. Lublin F, Miller DH, Freedman MS, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387:1075–84.

    Article  CAS  PubMed  Google Scholar 

  153. Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63:61–71.

    Article  CAS  PubMed  Google Scholar 

  154. Colombo E, Di Dario M, Capitolo E, et al. Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Ann Neurol. 2014;76:325–37.

    Article  CAS  PubMed  Google Scholar 

  155. Linker RA, Lee DH, Ryan S, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134:678–92.

    Article  PubMed  Google Scholar 

  156. Lee DH, Linker RA, Gold R. Spotlight on fumarates. Int MS J. 2008;15:12–8.

    PubMed  Google Scholar 

  157. Fox RJ. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. New Engl J Med. 2012;367:1087–97.

    Article  CAS  PubMed  Google Scholar 

  158. Gold R. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. New Engl J Med. 2012;367:1098–107.

    Article  CAS  PubMed  Google Scholar 

  159. Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. New Engl J Med. 2015;372:1476–8.

    Article  CAS  PubMed  Google Scholar 

  160. Nieuwkamp DJ, Murk JL, van Oosten BW. Consortium PDMP. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. New Engl J Med. 2015;372:1474–6.

    Article  CAS  PubMed  Google Scholar 

  161. Gold R, Arnold DL, Bar-Or A, et al. Long-term effects of delayed-release dimethyl fumarate in multiple sclerosis: interim analysis of ENDORSE, a randomized extension study. Mult Scler. 2017;23(2):253–65.

    Article  CAS  PubMed  Google Scholar 

  162. Gold R, Phillips JT, Havrdova E, et al. Delayed-release dimethyl fumarate and pregnancy: preclinical studies and pregnancy outcomes from clinical trials and postmarketing experience. Neurol Ther. 2015;4:93–104.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Siemasko K, Chong AS, Jack HM, Gong H, Williams JW, Finnegan A. Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J Immunol. 1998;160:1581–8.

    CAS  PubMed  Google Scholar 

  164. Xu X, Williams JW, Bremer EG, Finnegan A, Chong AS. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J Biol Chem. 1995;270:12398–403.

    Article  CAS  PubMed  Google Scholar 

  165. Dimitrova P, Skapenko A, Herrmann ML, Schleyerbach R, Kalden JR, Schulze-Koops H. Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J Immunol. 2002;169:3392–9.

    Article  CAS  PubMed  Google Scholar 

  166. Korn T, Magnus T, Toyka K, Jung S. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide—mechanisms independent of pyrimidine depletion. J Leukoc Biol. 2004;76:950–60.

    Article  CAS  PubMed  Google Scholar 

  167. Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol. 1999;162:2095–102.

    CAS  PubMed  Google Scholar 

  168. O'Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. New Engl J Med. 2011;365:1293–303.

    Article  CAS  PubMed  Google Scholar 

  169. Confavreux C, O'Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:247–56.

    Article  CAS  PubMed  Google Scholar 

  170. Vermersch P, Czlonkowska A, Grimaldi LME, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler J. 2014;20:705–16.

    Article  CAS  Google Scholar 

  171. Lutterotti A, Martin R. Getting specific: monoclonal antibodies in multiple sclerosis. Lancet Neurol. 2008;7:538–47.

    Article  CAS  PubMed  Google Scholar 

  172. Waldmann H, Hale G. CAMPATH: from concept to clinic. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360:1707–11.

    Article  CAS  Google Scholar 

  173. Cox AL, Thompson SA, Jones JL, et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol. 2005;35:3332–42.

    Article  CAS  PubMed  Google Scholar 

  174. Coles AJ, Wing MG, Molyneux P, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol. 1999;46:296–304.

    Article  CAS  PubMed  Google Scholar 

  175. Moreau T, Thorpe J, Miller D, et al. Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet. 1994;344:298–301.

    Article  CAS  PubMed  Google Scholar 

  176. Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol. 2006;253:98–108.

    Article  PubMed  Google Scholar 

  177. Coles A, Group oboTCIS. Alemtuzumab improved multiple sclerosis functional composite scores and delayed time to first relapse at 2-year interim analysis compared to subcutaneous interferon beta-1a. Mult Scler. 2007;13:S166.

    Google Scholar 

  178. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:1829–39.

    Article  CAS  PubMed  Google Scholar 

  179. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:1819–28.

    Article  CAS  PubMed  Google Scholar 

  180. Havrdova E, Arnold DL, Cohen JA, et al. Alemtuzumab CARE-MS I 5-year follow-up durable efficacy in the absence of continuous MS therapy. Neurology. 2017;89:1107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Coles AJ, Cohen JA, Fox EJ, et al. Alemtuzumab CARE-MS II 5-year follow-up efficacy and safety findings. Neurology. 2017;89:1117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Schippling S, Cohen J, Coles A, et al. Alemtuzumab-treated patients with RRMS demonstrate durable slowing of brain volume loss over 5 years despite most being treatment-free for 4 years: CARE-MS I and II extension study. Neurology. 2016;86:S51.001.

    Google Scholar 

  183. Simpson BS, Coles AJ. Rationale for cytotoxic monoclonal antibodies in MS. Int MS J. 2007;14:48–56.

    CAS  PubMed  Google Scholar 

  184. Coles AJ, Wing M, Smith S, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet. 1999;354:1691–5.

    Article  CAS  PubMed  Google Scholar 

  185. Senior P, Arnold D, Cohen J, et al. Incidence and timing of thyroid adverse events in patients with RRMS treated with alemtuzumab through 5 years of the CARE-MS studies. Neurology. 2016;86:P2.086.

    Google Scholar 

  186. Achiron A, Chambers C, Fox EJ, et al. Pregnancy outcomes in patients with active RRMS who received alemtuzumab in the clinical development program. Mult Scler J. 2015;21:581–2.

    Article  CAS  Google Scholar 

  187. Shlomchik MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity. 2008;28:18–28.

    Article  CAS  PubMed  Google Scholar 

  188. Meinl E, Krumbholz M, Hohlfeld R. B Lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol. 2006;59:880–92.

    Article  CAS  PubMed  Google Scholar 

  189. Cepok S, Rosche B, Grummel V, et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 2005;128:1667–76.

    Article  PubMed  Google Scholar 

  190. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–17.

    Article  CAS  PubMed  Google Scholar 

  191. Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B Cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8:613–23.

    Article  CAS  PubMed  Google Scholar 

  192. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376:221–34.

    Article  CAS  PubMed  Google Scholar 

  193. Hauser SL, Waubant E, Arnold DL, et al. B-Cell depletion with Rituximab in relapsing-remitting multiple sclerosis. New Engl J Med. 2008;358:676–88.

    Article  CAS  PubMed  Google Scholar 

  194. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209–20.

    Article  CAS  PubMed  Google Scholar 

  195. Hauser SL, Kappos L, Montalban X, et al. Safety of ocrelizumab in multiple sclerosis: updated analysis in patients with relapsing and primary progressive multiple sclerosis. Mult Scler J. 2017;23:324–5.

    Google Scholar 

  196. Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet. 1992;340:952–6.

    Article  CAS  PubMed  Google Scholar 

  197. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362:416–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manthey, C.F., Sebode, M., Hayward-Koennecke, H., Lutterotti, A., Huber, S. (2019). Drugs for Soft Tissue Autoimmune Disorders. In: Parnham, M., Nijkamp, F., Rossi, A. (eds) Nijkamp and Parnham's Principles of Immunopharmacology. Springer, Cham. https://doi.org/10.1007/978-3-030-10811-3_35

Download citation

Publish with us

Policies and ethics