Skip to main content

Cross-Fertilisation Between Human-Computer Interaction and Artificial Intelligence

  • Chapter
  • First Online:
A Guided Tour of Artificial Intelligence Research

Abstract

Human-Computer Interaction (HCI) and Artificial Intelligence (AI) are two disciplines that followed parallel trajectories for about four decades. They also both complement each other and overlap in various problem-rich domains. This chapter is far from being exhaustive, but provides a representative story of how HCI and AI cross-fertilise each other since their inception. It reviews the following domains: intelligent user interfaces and more specifically conversational animated affective agents; capitalisation, formulation and use of ergonomic knowledge for the design and evaluation of interactive systems; synergy between visualisation and data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “Human-Computer Interaction”, still very much used, is shifting toward “Human-Systems Interaction” since we are developing “systems” that include both computing and physical things.

  2. 2.

    http://hci.arc.nasa.gov/mslice.html.

  3. 3.

    See also Grudin (2009).

  4. 4.

    ACM (Association for Computing Machinery)-SIGCHI (Special Interest Group on Computer-Human Interaction).

  5. 5.

    The reader can refer to several papers in Volume 1 for an overview of the methods in Artificial Intelligence for the representation of knowledge and the reasoning.

  6. 6.

    An example of a BDI formalisation of emotions is proposed in chapter “Formalization of Cognitive-Agent Systems, Trust and Emotions” of Volume 1.

  7. 7.

    Machine learning methods are presented in details in chapter “Designing Algorithms for Machine Learning and Data Mining” of Volume 2.

  8. 8.

    The results of such algorithms are difficult to explain and to interpret, for instance System Vector Machine (SVM) or Neural Networks.

References

  • Abed M, Anli A, Kolski C, Grislin-Le Strugeon E (2011) A generic method for personalizing interactive systems: application to traveler information. In: Kolski C (ed) Human-computer interactions in transport. ISTE Ltd and Wiley, London, pp 51–91

    Google Scholar 

  • Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles P (1999) Towards a better understanding of context and context-awareness. In: Proceedings of the 1st international symposium on Handheld and Ubiquitous Computing, HUC ’99, pp 304–307

    Google Scholar 

  • Akiki PA, Bandara AK, Yu Y (2014) Adaptive model-driven user interface development systems. ACM Comput Surv 47(1):9:1–9:33

    Google Scholar 

  • Amar R, Eagan J, Stasko J (2005) Low-level components of analytic activity in information visualization. In: IEEE symposium on information visualization. IEEE Computer Society, pp 111–117

    Google Scholar 

  • Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data—a systematic approach. Springer, Berlin

    MATH  Google Scholar 

  • Asimov I (2008) I robot. Random House Publishing Group

    Google Scholar 

  • Baccino T, Bellino C, Colombi T (2005) Mesure de l’utilisabilité des interfaces. TIC et Sciences Cognitive, Hermes

    Google Scholar 

  • Bastien JMC, Scapin DL (1993) Ergonomic criteria for the evaluation of human-computer interfaces. Technical report 156, INRIA, Rocquencourt

    Google Scholar 

  • Bastien JMC, Scapin DL (2001) Evaluation des systèmes d’information et critères ergonomiques. In: Kolski C (ed) Environnement évolués et évaluation de l’IHM, Interaction Homme-Machine pour les SI, vol 2. Hermes, Paris, pp 53–80

    Google Scholar 

  • Bauer C, Dey AK (2016) Considering context in the design of intelligent systems: current practices and suggestions for improvement. J Syst Softw 112:26–47

    Article  Google Scholar 

  • Bauer JS, Newman MW, Kientz JA (2014) What designers talk about when they talk about context. Hum Comput Interact 29(5–6):420–450

    Article  Google Scholar 

  • Beale R, Creed C (2009) Affective interaction: how emotional agents affect users. Int J Hum Comput Stud 67(9):755–776

    Article  Google Scholar 

  • Beaudouin-Lafon M, Mackay W (2003) Prototyping tools and techniques. In: Jacko JA, Sears A (eds) The human computer handbook: fundamentals, evolving technologies, and emerging applications. L. Erlbaum Associates Inc, Hillsdale, pp 1006–1031

    Google Scholar 

  • Beka Be Nguema M, Kolski C, Malvache N, Waroux D (2000) Design of a human-error-tolerant interface using fuzzy logic. Eng Appl Artif Intell 13(3):279–292

    Article  Google Scholar 

  • Bellot P (2011) Recherche d’information contextuelle, assistée et personnalisée. Hermes Science Publications/Lavoisier, Collection recherche d’information et web

    Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am Mag 284:34–43

    Article  Google Scholar 

  • Bertin J (1998) Sémiologie Graphique: Les Diagrammes, Les Réseaux, Les Cartes. Les ré-impressions, Ecole des Hautes Etudes en Sciences Sociales

    Google Scholar 

  • Boy G (1991a) Intelligent assistant systems. Academic Press, New York

    Google Scholar 

  • Boy GA (1991b) Indexing hypertext documents in context. In: Proceedings of hypertext ’91. ACM Press, New York, pp 51–61

    Google Scholar 

  • Boy GA (1992) Semantic correlation in context: application in document comparison and group knowledge design. In: Boose JH, Clancey W, Gaines B, Rappaport A (eds) AAAI spring symposium on cognitive aspects of knowledge acquisition. Stanford University, CA, USA

    Google Scholar 

  • Boy GA (1998) Cognitive function analysis. Ablex/Greenwood, Westport

    Google Scholar 

  • Boy GA (2013) Orchestrating human-centered design. Springer, U.K

    Google Scholar 

  • Brehmer M, Munzner T (2013) A multi-level typology of abstract visualization tasks. IEEE Trans Vis Comput Graph 19(12):2376–2385

    Article  Google Scholar 

  • Brossard A, Abed M, Kolski C (2011) Taking context into account in conceptual models using a model driven engineering approach. Inf Softw Technol 53(12):1349–1369

    Article  Google Scholar 

  • Brusilovsky P, Kobsa A, Nejdl W (eds) (2007) The adaptive web: methods and strategies of web personalization. Springer, Heidelberg

    Google Scholar 

  • Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J (2003) A unifying reference framework for multi-target user interfaces. Interact Comput 15(3):289–308

    Article  Google Scholar 

  • Calvary G, Coutaz J, Dâassi O, Balme L, Demeure A (2004) Towards a new generation of widgets for supporting software plasticity: The “comet”. In: Engineering human computer interaction and interactive systems, joint working conferences EHCI-DSVIS 2004, Hamburg, Germany, 11–13 July 2004, Revised selected papers, pp 306–324

    Google Scholar 

  • Calvary G, Pribeanu C, Santucci G, Vanderdonckt J (eds) (2008) Computer-aided design of user interfaces V—sixth international conference of computer-aided design of user interfaces 2006. Springer, Bucharest

    MATH  Google Scholar 

  • Canamero L (2003) Designing emotions for activity selection in autonomous agents. In: Petta P, Payr S, Trappl R (eds) Emotions in humans and artifacts. MIT Press, Cambridge, pp 115–148

    Google Scholar 

  • Caplier A (2011) Visual emotion recognition: status and key issues. In: Pelachaud C (ed) Emotion-oriented systems. Wiley, New York

    Google Scholar 

  • Card S, Mackinlay J, Shneiderman B (1999) Readings in information visualization. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Card SK, Moran TP, Newell A (1983) The psychology of human-computer interaction. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Cassell J (2000) More than just another pretty face: embodied conversational interface agents. Commun ACM 43:70–78

    Article  Google Scholar 

  • Chi EH (2000) A taxonomy of visualization techniques using the data state reference model. In: IEEE symposium on information vizualization. IEEE Computer Society, pp 69–75

    Google Scholar 

  • Chignell MH, Hancock PA (1988) Intelligent interface design. In: Helander M (ed) Handbook of human-computer interaction. Elsevier, Amsterdam, pp 969–995

    Chapter  Google Scholar 

  • Chollet M, Ochs M, Pelachaud C (2017) A methodology for the automatic extraction and generation of non-verbal signals sequences conveying interpersonal attitudes. IEEE Trans Affect Comput

    Google Scholar 

  • Clavel C, Richard G (2011) Recognition of acoustic emotion. In: Pelachaud C (ed) Emotion-oriented systems. Wiley, Hoboken

    Google Scholar 

  • Coutaz J, Calvary G (2012) HCI and software engineering for user interface plasticity. CRC Press, Taylor and Francis Group, Boca Raton, pp 1195–1220

    Google Scholar 

  • Coutaz J, Rey G (2002) Foundations for a theory of contextors. In: Kolski C, Vanderdonckt J (eds) Computer-aided design of user interfaces III In: Fourth international conference of computer-aided design of user interfaces, vol 3. Kluwer Academic, Dordrecht, pp 13–34

    Google Scholar 

  • Daassi C, Nigay L, Fauvet MC (2006) A taxonomy of temporal data visualization techniques. Rev Inf Interact Intell 5(2):41–63

    MATH  Google Scholar 

  • deRosis F, Pelachaud C, Poggi I, Carofiglio V, Carolis BD (2003) From Greta’s mind to her face: modelling the dynamics of affective states in a conversational embodied agent. Int J Hum-Comput Stud 59(1–2):81–118

    Google Scholar 

  • Dey AK (2001) Understanding and using context. Pers Ubiquitous Comput 5(1):4–7

    Article  Google Scholar 

  • dos Santos S, Brodlie K (2004) Gaining understanding of multivariate and multidimensional data through visualization. Comput Graph 28(3):311–325

    Article  Google Scholar 

  • Edmonds EA (1981) Adaptive man-computer interfaces. In: Coombs MJ, Alty JL (eds) Computing skills and the user interface. Academic, London, pp 389–426

    Google Scholar 

  • Ezzedine H, Trabelsi A, Tran C, Kolski C (2012) Criteria and methods for interactive system evaluation: application to a regulation post in the transport domain. In: Hammadi S, Ksouri M (eds) Advanced mobility and transport engineering. ISTE Wiley, London, pp 183–230

    Google Scholar 

  • Findlater L, Gajos KZ (2009) Design space and evaluation challenges of adaptive graphical user interfaces. AI Mag 30(4):68–73

    Article  Google Scholar 

  • Ford KM, Glymour C, Hayes PJ (1997) Cognitive prostheses. AI Mag 18(3):104–105

    Google Scholar 

  • Gallud JA, Tesoriero R, Penichet VMR (eds) (2011) Distributed user interfaces - designing interfaces for the distributed ecosystem. Springer, London

    Google Scholar 

  • Gallud JA, Lozano MD, Vanderdonckt J (2014) Distributed user interfaces: usability and collaboration. Int J Hum Comput Stud 72(1):44. https://doi.org/10.1016/j.ijhcs.2013.10.006

    Article  Google Scholar 

  • Germanakos P, Belk M (2016) Human-centred web adaptation and personalization - from theory to practice. Human-computer interaction series. Springer, Berlin

    Book  Google Scholar 

  • Gonzalez Calleros J, Meixner G, Paterno F, Pullmann J, Raggett DS, Vanderdonckt J (2010) Model-based ui xg final report. In: Cantera Fonseca J (ed) W3C incubator group report

    Google Scholar 

  • Grammenos D, Akoumianakis D, Stephanidis C (2000) Integrated support for working with guidelines: the sherlock guideline management system. Interact Comput 12(3):281–311

    Article  Google Scholar 

  • Gratch J, Marsella S (2004) A domain-independent framework for modeling emotion. J Cogn Syst Res 5(4):269–306

    Article  Google Scholar 

  • Grudin J (1994) Computer-supported cooperative work: history and focus. Computer 27(5):19–26

    Article  Google Scholar 

  • Grudin J (2009) AI and HCI: two fields divided by a common focus. AI Mag 30(4):48–57

    Article  Google Scholar 

  • Hancock PA, Chignell MH (eds) (1989) Intelligent interfaces: theory, research and design. North-Holland, Amsterdam

    Google Scholar 

  • Herman I, Marshall MS, Melançon G (2000) Graph visualisation and navigation in information visualisation: a survey. IEEE Trans Vis Comput Graph 6(1):24–43

    Google Scholar 

  • Hewett T, Baecker R, Card S, Carey T, Gasen J, Mantei M, Perlman G, Strong G, Verplank W (1992) ACM SIGCHI curricula for human-computer interaction. ACM, New York

    Book  Google Scholar 

  • Hofer G, Richmond K (2010) Comparison of HMM and TMD methods for lip synchronisation. In: Kobayashi T, Hirose K, Nakamura S (eds) INTERSPEECH 2010, 11th annual conference of the international speech communication association, Makuhari, Chiba, Japan, 26–30 September 2010. ISCA, pp 454–457

    Google Scholar 

  • Hoffman PE, Grinstein GG (2002) A survey of visualizations for high-dimensional data mining. In: Fayyad U, Grinstein G, Wierse A (eds) Information visualization in data mining and knowledge discovery. Morgan Kaufmann Publishers, San Francisco, pp 47–82

    Google Scholar 

  • Hoffmann L, Krämer NC, Lam-Chi A, Kopp S (2009) Media equation revisited: do users show polite reactions towards an embodied agent? International workshop on intelligent virtual agents. Springer, Berlin, pp 159–165

    Google Scholar 

  • Hook K (2000) Steps to take before intelligent user interfaces become real. Interact Comput 12:409–426

    Article  Google Scholar 

  • Huart J, Kolski C, Bastien C (2008) L’évaluation de documents multimédias, état de l’art. In: Merviel S (ed) Objectiver l’humain? Qualification, quantification, vol 1. Hermes, Paris, pp 211–250

    Google Scholar 

  • Hussmann H, Meixner G, Zuehlke D (eds) (2011) Model-driven development of advanced user interfaces. Studies in computational intelligence, vol 340. Springer, Berlin

    Google Scholar 

  • Hutchins E (1995) Cognition in the wild. MIT Press, Cambridge

    Google Scholar 

  • Isenberg T, Isenberg P, Chen J, Sedlmair M, Möller T (2013) A systematic review on the practice of evaluating visualization. IEEE Trans Vis Comput Graph 19(12):2818–2827

    Article  Google Scholar 

  • Ivory MY, Hearst MA (2001) The state of the art in automating usability evaluation of user interfaces. ACM Comput Surv 33(4):470–516

    Article  Google Scholar 

  • Jacko JA (ed) (2012) The human computer handbook: fundamentals, evolving technologies, and emerging applications, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Jacob RJK, Limbourg Q, Vanderdonckt J (eds) (2004) Computer-Aided Design of User Interfaces IV - Fifth International Conference of Computer-Aided Design of User Interfaces. Kluwer, Funchal

    Google Scholar 

  • Jambon F, Brun P, Ait-Ameur Y (2001) Spécification des systèmes interactifs. In: Kolski C (ed) Analyse et Conception de l’IHM. Interaction Homme-Machine pour les SI, vol 1. Editions Hermes, Paris, pp 175–206

    Google Scholar 

  • Jameson A (2007) Adaptive interfaces and agents. In: Sears A, Jacko JA (eds) The human computer handbook: fundamentals, evolving technologies, and emerging applications. CRC Press, Boca Raton, pp 433–458

    Google Scholar 

  • Jameson A, Gajos KZ (2012) Systems that adapt to their users. In: Jacko JA (ed) The human computer handbook: fundamentals, evolving technologies, and emerging applications. CRC Press, Boca Raton, pp 431–456

    Google Scholar 

  • Jaques PA, Viccari RM (2004) A BDI approach to infer student’s emotions. In: The proceedings of the Ibero-American conference on artificial intelligence (IBERAMIA). Springer, Puebla, pp 901–911

    Google Scholar 

  • Kolski C, Le Strugeon E (1998) A review of intelligent human-machine interfaces in the light of the arch model. Int J Hum-Comput Interact 10(3):193–231

    Article  Google Scholar 

  • Kolski C, Vanderdonckt J (eds) (2002) Computer-aided design of user interfaces III - fourth international conference of computer-aided design of user interfaces. Kluwer, Valenciennes

    Google Scholar 

  • Kolski C, Tendjaoui M, Millot P (1992) A process method for the design of “intelligent” man-machine interfaces: case study: “the decisional module of imagery”. Int J Hum Factors Manuf 2(2):155–175

    Article  Google Scholar 

  • Kubicki S, Lebrun Y, Lepreux S, Adam E, Kolski C, Mandiau R (2013) Simulation in contexts involving an interactive table and tangible objects. Simul Model Pract Theory 31:116–131

    Article  Google Scholar 

  • Lazarus RS (1991) Emotion and adaptation. Oxford University Press, Oxford

    Google Scholar 

  • Lebrun Y, Adam E, Mandiau R, Kolski C (2015) A model for managing interactions between tangible and virtual agents on an RFID interactive tabletop: case study in traffic simulation. J Comput Syst Sci 81(3):585–598

    Article  Google Scholar 

  • Lee B, Plaisant C, Parr CS, Fekete J, Henry N (2006) Task taxonomy for graph visualization. In: AVI workshop on beyond time and errors: novel evaluation methods for information visualization BELIV ’06. ACM, New York, pp 1–5

    Google Scholar 

  • Lieberman H (1995) Letizia: an agent that assists web browsing. In: Fourteenth international joint conference on artificial intelligence, IJCAI 95, pp 924–929

    Google Scholar 

  • Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, Florins M, Trevisan D (2004) Usixml: a user interface description language for context-sensitive user interfaces. In: ACM AVI’2004 workshop “developing user interfaces with xml: advances on user interface description languages”, pp 55–62

    Google Scholar 

  • Lozano MD, Mashat AS, Fardoun HM, Gallud JA, Penichet VMR, Tesoriero R, Vanderdonckt J (eds) (2013) Distributed user interfaces: models, methods and tools, DUI 2013. In: Conjunction with ACM EICS 2013 conference, London, UK, 24 June 2013

    Google Scholar 

  • Mandiau R, Kolski C, Millot P, Chaib-Draa B (1991) A new approach for the cooperation between human(s) and assistance system(s): a system based on intentional states. In: Liebowitz J (ed) Expert systems world congress proceedings, vol 3. Pergamon Press, New-York, pp 1672–1679

    Google Scholar 

  • Maybury MT (1999) Intelligent user interfaces: an introduction (tutorial notes)

    Google Scholar 

  • de Melo CM, Carnevale P, Read S, Antos D, Gratch J (2012) Bayesian model of the social effects of emotion in decision-making in multiagent systems. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems - volume 1, international foundation for autonomous agents and multiagent systems, Richland, SC, AAMAS ’12, pp 55–62

    Google Scholar 

  • Meyer M, Sedlmair M, Munzner T (2012) The four-level nested model revisited: Blocks and guidelines. In: Workshop on beyond time and errors: novel evaluation methods for information visualization (BELIV)

    Google Scholar 

  • Moussa F, Ismail I, Jarraya M (2015) Towards a runtime evolutionary model of user-adapted interaction in a ubiquitous environment: the RADEM formal model. Cogn Technol Work 17(3):391–415

    Article  Google Scholar 

  • Munzner T (2009) A nested process model for visualization design and validation. IEEE Trans Vis Comput Graph 15:921–928

    Article  Google Scholar 

  • Nielsen J (1993) Usability engineering. Academic, New York

    Book  MATH  Google Scholar 

  • Niewiadomski R, Pelachaud C (2007) Fuzzy similarity of facial expressions of embodied agents. In: Proceedings of the 7th international conference on intelligent virtual agents. Springer, Berlin, pp 86–98

    Google Scholar 

  • Norman DA (1986) Cognitive engineering. In: Norman DA, Draper SW (eds) User centered system design: new perspectives on human-computer interaction. Lawrence Erlbaum Associates, Hillsdale, pp 31–61

    Chapter  Google Scholar 

  • Ochs M, Niewiadomski R, Brunet P, Pelachaud C (2012a) Smiling virtual agent in social context. Cogn Process 13(2):519–532

    Article  Google Scholar 

  • Ochs M, Sadek D, Pelachaud C (2012b) A formal model of emotions for an empathic rational dialog agent. Auton Agents Multi-Agent Syst 24(3):410–440

    Article  Google Scholar 

  • de Oliveira KM, Bacha F, Houda M, Abed M (2013) Transportation ontology definition and application for the content personalization of user interfaces. Expert Syst Appl 40(8):3145–3159

    Article  Google Scholar 

  • Paterno F (1999) Model-based design and evaluation of interactive applications, 1st edn. Springer, London

    MATH  Google Scholar 

  • Peintner B, Viappiani P, Yorke-Smith N (2008) Preferences in interactive systems: technical challenges and case studies. AI Mag 29(4):13–24

    Article  Google Scholar 

  • Pelachaud C (2009) Modeling multimodal expression of emotion in a virtual agent. Philos Trans R Soc B Biol Sci 364:3539–3548

    Article  Google Scholar 

  • Picard R (1997) Affective computing. MIT Press, Cambridge

    Google Scholar 

  • Porhet C, Ochs M, Saubesty J, Montcheuil G, Bertrand R (2017) Mining a multimodal corpus of doctor’s training for virtual patient’s feedbacks. In: Proceedings of 19th ACM international conference on multimodal interaction (ICMI), Glasgow, UK

    Google Scholar 

  • Provost F, Fawcett T (2013) Data science and its relationship to big data and data-driven decision making. Big Data 1(1):51–59

    Article  Google Scholar 

  • Purchase HC (2012) Experimental human-computer interaction: a practical guide with visual examples. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rouse WB, Morris NM (1987) Conceptual design of a human error tolerant interface for complex engineering systems. Automatica 23(2):231–235

    Article  Google Scholar 

  • Salovey P, Bedell B, Detweiler J, Mayer J (2000) Current directions in emotional intelligence research. In: Lewis M, Haviland-Jones J (eds) Handbook of emotions. Guilford Press, New York, pp 504–520

    Google Scholar 

  • Scapin DL (1986) Guide ergonomique de conception des interfaces homme-ordinateur. Technical report 77, INRIA, Le Chesnay

    Google Scholar 

  • Scherer K (2000) Emotion. In: Hewstone M, Stroebe W (eds) Introduction to social psychology: a European perspective. Oxford Blackwell Publishers, Oxford, pp 151–191

    Google Scholar 

  • Schneider-Hufschmidt M, Khme T, Malinkowski U (eds) (1993) Adaptive user interfaces. North Holland, Amsterdam

    Google Scholar 

  • Sedlmair M, Meyer M, Munzner T (2012) Design study methodology: reflections from the trenches and the stacks. IEEE Trans Vis Comput Graph (Proc InfoVis 2012) 18(12):2431–2440

    Google Scholar 

  • Seffah A, Vanderdonckt J, Desmarais M (eds) (2009) Human-centered software engineering, software engineering models, patterns and architectures for HCI, vol 2. Springer, London

    Google Scholar 

  • Shadbolt N, Hall W, Berners-Lee T (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101

    Article  Google Scholar 

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualization. In: IEEE conference on visual languages (VL’96). IEEE CS Press, pp 336–343

    Google Scholar 

  • Shneiderman B, Maes P (1997) Direct manipulation versus interface agents. Interactions 4(6):42–61

    Article  Google Scholar 

  • Silva SF, Catarci T (2000) Visualization of linear time-oriented data: a survey. In: Proceedings of the first international conference on web information systems engineering, vol 1, pp 310–319

    Google Scholar 

  • Smith SL, Mosier JN (1986) Guidelines for designing user interface software. Technical report MTR-10090, ESD-TR-86-278, MITRE Corp., Bedford, MA

    Google Scholar 

  • Sottet J, Calvary G, Favre J, Coutaz J (2009) Megamodeling and metamodel-driven engineering for plastic user interfaces: MEGA-UI. In: Human-centered software engineering - software engineering models, patterns and architectures for HCI, pp 173–200

    Google Scholar 

  • Stephanidis C (2009) The universal access handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • Stewart T, Travis D (2002) Guidelines, standards, and style guides. In: Jacko JA, Sears A (eds) The human computer handbook: fundamentals, evolving technologies, and emerging applications. L. Erlbaum Associates Inc, Hillsdale, pp 991–1005

    Google Scholar 

  • Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009:1–19. Article ID 421,425

    Google Scholar 

  • Szekely P (1996) Retrospective and challenges for model-based interface development. Design, specification and verification of interactive systems, vol 96. Springer, Berlin, pp 1–27

    Google Scholar 

  • Thevenin D, Coutaz J (1999) Plasticity of user interfaces: framework and research agenda. In: Sasse A, Johnson C (eds) IFIP TC.13—Human-computer interaction, INTERACT 99. IOS Press

    Google Scholar 

  • Thomas JJ, Cook KA (2006) Illuminating the path: the research and development agenda for visual analytics. IEEE Computer Society

    Google Scholar 

  • Tran CD, Ezzedine H, Kolski C (2013) Eiseval, a generic reconfigurable environment for evaluating agent-based interactive systems. Int J Hum Comput Stud 71(6):725–761

    Article  Google Scholar 

  • van den Bergh J (2006) High-level user interface models for model-driven design of context-sensitive user interfaces. PhD thesis, Hasselt University, Belgium

    Google Scholar 

  • Vanderdonckt J (1994) Guide ergonomique des interfaces homme-machine. Presses Universitaires de Namur, Namur, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium

    Google Scholar 

  • Vanderdonckt J (1999) Development milestones towards a tool for working with guidelines. Interact Comput 12(2):81–118

    Article  Google Scholar 

  • Vanderdonckt J, Coyette A (2007) Modèles, méthodes et outils de support au prototypage multi-fidélité des interfaces graphiques. Revue d’Interaction Homme-Machine 8(1):91–123

    Google Scholar 

  • Vanderdonckt J, Puerta AR (eds) (1999) Computer-aided design of user interfaces II - third international conference of computer-aided design of user interfaces. Kluwer, Louvain-la-Neuve

    MATH  Google Scholar 

  • van Wijk J (2005) The value of visualization. In: Silva C, Groeller E, Rushmeier H (eds) IEEE visualization. IEEE Computer Society, pp 79–86

    Google Scholar 

  • von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete JD, Fellner DW (2011) Visual analysis of large graphs: state-of-the-art and future research challenges. Comput Graph Forum 30(6):1719–1749

    Article  Google Scholar 

  • Ware C (2000) Information visualization: perception for design. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Winograd T (2001) Architectures for context. Hum-Comput Interact 16(2):401–419

    Article  Google Scholar 

  • Woodson W, Conover D (1964) Human engineering guide for equipment designers. University of California Press, Berkeley

    Google Scholar 

  • Zhang L, Stoffel A, Behrisch M, Mittelstadt S, Schreck T, Pompl R, Weber S, Last H, Keim D (2012) Visual analytics for the big data era?a comparative review of state-of-the-art commercial systems. In: 2012 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 173–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Kolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolski, C., Boy, G.A., Melançon, G., Ochs, M., Vanderdonckt, J. (2020). Cross-Fertilisation Between Human-Computer Interaction and Artificial Intelligence. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06170-8_11

Download citation

Publish with us

Policies and ethics