Skip to main content

Sorbitol Demineralization by Ion Exchange

  • Chapter
  • First Online:
  • 911 Accesses

Abstract

Sorbitol is a sugar alcohol commonly known as D-glucitol. It is synthesized from glucose by a reduction reaction altering the aldehyde group to a hydroxyl group. The body slowly metabolizes sorbitol, minimizing the possibility of increasing the insulin level, and this makes it a good sweetener for diabetic patients. Sorbitol finds diverse applications in the food industry, and its purity is a significant factor to be considered before it is used as an additive to food. Various types of ion-exchange and membrane technologies have been applied for purifying this compound. This chapter is aimed to illustrate the different ion-exchange chromatographic techniques for demineralization/deashing of sorbitol with future perspectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marques C,Tarek R, Sara M, Brar SK (2016) Sorbitol production from biomass and its global market platform chemical biorefinery, First Edition, p 217–227

    Google Scholar 

  2. Ortiz ME, Bleckwedel J, Raya RR Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97:4713–4726

    Article  CAS  Google Scholar 

  3. Celligoi, MAPC, Borsari RRJ, Buzato JB, Silva RSDSFD (2010) Evaluation of supplementation of sucrose medium on the synthesis of Zymomonas mobilisbio-products. Acta Scientiarum Biol Sci 32

    Google Scholar 

  4. Barros MD, Celligoi MAPC (2006) Synthesis of sorbitol by Zymomonas mobilisunder high osmotic pressure. Braz J Microbiol 37:324–328

    Article  Google Scholar 

  5. Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  CAS  Google Scholar 

  6. Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  Google Scholar 

  7. VanGorp K, Boerman E, Cavenaghi CV, Berben PH (1999) Catalytic hydrogenation of fine chemicals: sorbitol production. Catal Today 52:349–361

    Article  CAS  Google Scholar 

  8. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical Excipients. Pharmaceutical Press. Sambhakar S, Singh B, Paliwal S, Mishra PR (2012) Sorbitol based proniosomes to improve permeability and stability of an oral Cephalosporin

    Google Scholar 

  9. Schiweck HEA (2008) Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, Sugar Alcohols

    Google Scholar 

  10. Dies RC, Kearsley MW (2012) Sorbitol and Mannitol. Sweeteners and sugar alternatives in food technology. Ames Oxford 2:249–261

    Google Scholar 

  11. Chen X, Wang X, Yao S, Mu X (2013) Hydrogenolysis of biomass derived sorbitol to glycols and glycerol over Ni-MgO catalysts. Catal Commun 39:86–89

    Article  CAS  Google Scholar 

  12. Yang FC, Lim YH (1997) Kinetic study of the bioconversion of D-sorbitol to L-sorbose by Acetobacter pasteurianus. Process Biochem 32:233–236

    Article  Google Scholar 

  13. Sefcovicova J, Filip J, Tomic P, Gemeiner P, BuckoM Magdolen P, Tkac J (2011) A biopolymer based carbon nanotube interface integrated with a redox shuttle a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol. Microchim Acta 175:21–30

    Article  CAS  Google Scholar 

  14. Shwide SC, Swift C, Ross T (2012) Non-nutritive sweeteners: where are we today? Diabetes Spectrum 25:104–110

    Article  Google Scholar 

  15. Radhika GS, Moorthy SN (2009) Sugar alcohols—a review. Trends Carbohydr Res 1:71–79

    Google Scholar 

  16. Arcos JA, Bernabé M, Otero C (1998) Quantitative enzymatic production of 1,6-diacyl sorbitol esters. Biotechnol Bioeng 60:53–60

    Article  CAS  Google Scholar 

  17. Hyams JS (1982) Chronic abdominal pain caused by sorbitol malabsorption. J Pediatrics 100:772–773

    Article  CAS  Google Scholar 

  18. Saniocki I, Sakmann A, Leopold CS (2013) Evaluation of the suitability of various lubricants for direct compaction of sorbitol tablet formulations. J Excipients Food Chem 4:169–182

    Google Scholar 

  19. Sambhakar S, Singh B, Paliwal S, Mishra PR (2012) Sorbitol based proniosomes to improve the permeability andstability of an oral Cephlosp orin

    Google Scholar 

  20. Lai WC, Cheng LT (2014) Preparation and characterization of novel poly(vinylidene fluoride) membranes using self-assembled dibenzylidene sorbitol for membrane distillation. Desalination 332:7–17

    Article  CAS  Google Scholar 

  21. Aminah A, Jusoff K, St.Hadijah, Nuraeni R., Palad Marliana S, Muchtar AH, Nonci, M(2013) Increasing soybean (glycine max L) drought resistant with osmolit sorbitol. Mod Appl Sci 7:78–85

    Google Scholar 

  22. Vilcocq L, Koerin R, Cabiac A, Especel C, Lacombe S, Duprez D (2014) New bifunctional catalytic systems for sorbitol transformation into biofuels. Appl Catal B Environ 499–508

    Article  CAS  Google Scholar 

  23. Bhusnure OG, Mali SN (2015) Recent trends in ion exchange chromatography. Int J Pharm Drug Anal 3(12):403–416

    Google Scholar 

  24. Alios J, Rainer H (2009) Ion exchange chromatography. Guide to protein purification. Methods Enzymol Elsevier 463:349–371

    Article  Google Scholar 

Download references

Acknowledgements

SBU and Rijeeba would like to acknowledge the Institute of Bioresources and Sustainable Development, a national institute under DBT, Government of India, for providing help and support. Raveendran Sindhu acknowledges the Department of Science and Technology for sanctioning a project under DST WOS-B scheme. Raveendran Sindhu and Parameswaran Binod acknowledge EPFL, Lausanne, Switzerland, for providing visiting fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raveendran Sindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ummalyma, S.B., Rijeeba, H., Sindhu, R., Binod, P., Pandey, A., Gnansounou, E. (2019). Sorbitol Demineralization by Ion Exchange. In: Inamuddin (eds) Applications of Ion Exchange Materials in Biomedical Industries. Springer, Cham. https://doi.org/10.1007/978-3-030-06082-4_7

Download citation

Publish with us

Policies and ethics