Skip to main content

The Ethics of Passive Data and Digital Phenotyping in Neurosurgery

  • Chapter
  • First Online:
Ethics of Innovation in Neurosurgery

Abstract

Passive data (PD) refers to data generated without any active participation of the subject, such as data from global positioning systems and accelerometers, but also includes metadata on phone call and text activity. As PD can provide unique insight into a patient’s behavior and functioning, it can have numerous applications in neurosurgery, varying from early symptom recognition to postoperative monitoring. The deployment of this technique is, however, associated with substantial ethical challenges. This chapter aims to address these ethical challenges by reviewing the normative ethical literature on this topic. The ethical discussion focusses predominantly on informational privacy, informed consent, and data security; however, significant concerns are also expressed related to regulation of PD products, equity in access, vulnerable patient groups, ownership of the data, and secondary use. The significant degree of consensus in the current ethical literature, the broader empirical evidence supporting the discussed concerns, and the parallels with ethical topics, solutions, and regulations in other medical and nonmedical fields can guide the construction of an ethical framework that ensures a safe and sound implementation of PD in neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah S, Matthews M, Frank E, Doherty G, Gay G, Choudhury T. Automatic detection of social rhythms in bipolar disorder. J Am Med Inform Assoc. 2016;23(3):538–43. https://doi.org/10.1093/jamia/ocv200.

    Article  PubMed  Google Scholar 

  2. Beiwinkel T, Kindermann S, Maier A, et al. Using smartphones to monitor bipolar disorder symptoms: a pilot study. JMIR Ment Health. 2016;3(1):e2. https://doi.org/10.2196/mental.4560.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ben-Zeev D, Scherer EA, Wang R, Xie H, Campbell AT. Next-generation psychiatric assessment: using smartphone sensors to monitor behavior and mental health. Psychiatr Rehabil J. 2015;38(3):218–26. https://doi.org/10.1037/prj0000130.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Capecci M, Pepa L, Verdini F, Ceravolo MG. A smartphone-based architecture to detect and quantify freezing of gait in Parkinson’s disease. Gait Posture. 2016;50:28–33. https://doi.org/10.1016/j.gaitpost.2016.08.018.

    Article  PubMed  Google Scholar 

  5. Ellis RJ, Ng YS, Zhu S, et al. A validated smartphone-based assessment of gait and gait variability in Parkinson’s disease. PLoS One. 2015;10(10):e0141694. https://doi.org/10.1371/journal.pone.0141694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Faurholt-Jepsen M, Frost M, Vinberg M, Christensen EM, Bardram JE, Kessing LV. Smartphone data as objective measures of bipolar disorder symptoms. Psychiatry Res. 2014;217(1-2):124–7. https://doi.org/10.1016/j.psychres.2014.03.009.

    Article  PubMed  Google Scholar 

  7. Faurholt-Jepsen M, Vinberg M, Frost M, Christensen EM, Bardram JE, Kessing LV. Smartphone data as an electronic biomarker of illness activity in bipolar disorder. Bipolar Disord. 2015;17(7):715–28. https://doi.org/10.1111/bdi.12332.

    Article  PubMed  Google Scholar 

  8. Grunerbl A, Muaremi A, Osmani V, et al. Smartphone-based recognition of states and state changes in bipolar disorder patients. IEEE J Biomed Health Inform. 2015;19(1):140–8. https://doi.org/10.1109/JBHI.2014.2343154.

    Article  PubMed  Google Scholar 

  9. Guidi A, Salvi S, Ottaviano M, et al. Smartphone application for the analysis of prosodic features in running speech with a focus on bipolar disorders: system performance evaluation and case study. Sensors (Basel). 2015;15(11):28070–87. https://doi.org/10.3390/s151128070.

    Article  Google Scholar 

  10. Kostikis N, Hristu-Varsakelis D, Arnaoutoglou M, Kotsavasiloglou C. Smartphone-based evaluation of parkinsonian hand tremor: quantitative measurements vs clinical assessment scores. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:906–9. https://doi.org/10.1109/EMBC.2014.6943738.

    Article  CAS  PubMed  Google Scholar 

  11. LeMoyne R, Tomycz N, Mastroianni T, McCandless C, Cozza M, Peduto D. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6772–5. https://doi.org/10.1109/EMBC.2015.7319948.

    Article  PubMed  Google Scholar 

  12. Pan D, Dhall R, Lieberman A, Petitti DB. A mobile cloud-based Parkinson’s disease assessment system for home-based monitoring. JMIR Mhealth Uhealth. 2015;3(1):e29. https://doi.org/10.2196/mhealth.3956.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Senova S, Querlioz D, Thiriez C, Jedynak P, Jarraya B, Palfi S. Using the accelerometers integrated in smartphones to evaluate essential tremor. Stereotact Funct Neurosurg. 2015;93(2):94–101. https://doi.org/10.1159/000369354.

    Article  PubMed  Google Scholar 

  14. Takac B, Catala A, Rodriguez Martin D, van der Aa N, Chen W, Rauterberg M. Position and orientation tracking in a ubiquitous monitoring system for Parkinson disease patients with freezing of gait symptom. JMIR Mhealth Uhealth. 2013;1(2):e14. https://doi.org/10.2196/mhealth.2539.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile sensing and support for people with depression: a pilot trial in the wild. JMIR Mhealth Uhealth. 2016;4(3):e111. https://doi.org/10.2196/mhealth.5960.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Onnela JP, Rauch SL. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology. 2016;41(7):1691–6. https://doi.org/10.1038/npp.2016.7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Torous J, Kiang MV, Lorme J, Onnela JP. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Ment Health. 2016;3(2):e16. https://doi.org/10.2196/mental.5165.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Torous J, Onnela JP, Keshavan M. New dimensions and new tools to realize the potential of RDoC: digital phenotyping via smartphones and connected devices. Transl Psychiatry. 2017;7(3):e1053. https://doi.org/10.1038/tp.2017.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmier JK, Halpern MT. Patient recall and recall bias of health state and health status. Expert Rev Pharmacoecon Outcomes Res. 2004;4(2):159–63. https://doi.org/10.1586/14737167.4.2.159.

    Article  PubMed  Google Scholar 

  20. Aleem IS, Duncan J, Ahmed AM, et al. Do lumbar decompression and fusion patients recall their preoperative status? A cohort study of recall bias in patient-reported outcomes. Spine (Phila Pa 1976). 2017;42(2):128–34. https://doi.org/10.1097/BRS.0000000000001682.

    Article  Google Scholar 

  21. McPhail S, Haines T. Response shift, recall bias and their effect on measuring change in health-related quality of life amongst older hospital patients. Health Qual Life Outcomes. 2010;8:65. https://doi.org/10.1186/1477-7525-8-65.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Balestra M, Shaer O, Okerlund J, Westendorf L, Ball M, Nov O. Social annotation valence: the impact on online informed consent beliefs and behavior. J Med Internet Res. 2016;18(7):e197. https://doi.org/10.2196/jmir.5662.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Markowetz A, Blaszkiewicz K, Montag C, Switala C, Schlaepfer TE. Psycho-informatics: big data shaping modern psychometrics. Med Hypotheses. 2014;82(4):405–11. https://doi.org/10.1016/j.mehy.2013.11.030.

    Article  PubMed  Google Scholar 

  24. Mikal J, Hurst S, Conway M. Ethical issues in using Twitter for population-level depression monitoring: a qualitative study. BMC Med Ethics. 2016;17:22. https://doi.org/10.1186/s12910-016-0105-5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miller G. The smartphone psychology manifesto. Perspect Psychol Sci. 2012;7(3):221–37. https://doi.org/10.1177/1745691612441215.

    Article  PubMed  Google Scholar 

  26. Mok TM, Cornish F, Tarr J. Too much information: visual research ethics in the age of wearable cameras. Integr Psychol Behav Sci. 2015;49(2):309–22. https://doi.org/10.1007/s12124-014-9289-8.

    Article  PubMed  Google Scholar 

  27. DiStefano MJ, Schmidt H. mHealth for tuberculosis treatment adherence: a framework to guide ethical planning, implementation, and evaluation. Glob Health Sci Pract. 2016;4(2):211–21. https://doi.org/10.9745/GHSP-D-16-00018.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Demiris G, Doorenbos AZ, Towle C. Ethical considerations regarding the use of technology for older adults. The case of telehealth. Res Gerontol Nurs. 2009;2(2):128–36. https://doi.org/10.3928/19404921-20090401-02.

    Article  PubMed  Google Scholar 

  29. Kelly P, Marshall SJ, Badland H, et al. An ethical framework for automated, wearable cameras in health behavior research. Am J Prev Med. 2013;44(3):314–9. https://doi.org/10.1016/j.amepre.2012.11.006.

    Article  PubMed  Google Scholar 

  30. Sorell T, Draper H. Telecare, surveillance, and the welfare state. Am J Bioeth. 2012;12(9):36–44. https://doi.org/10.1080/15265161.2012.699137.

    Article  PubMed  Google Scholar 

  31. Gimbert C, Lapointe FJ. Self-tracking the microbiome: where do we go from here? Microbiome. 2015;3:70. https://doi.org/10.1186/s40168-015-0138-x.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Landau R, Werner S. Ethical aspects of using GPS for tracking people with dementia: recommendations for practice. Int Psychogeriatr. 2012;24(3):358–66. https://doi.org/10.1017/S1041610211001888.

    Article  PubMed  Google Scholar 

  33. O’Doherty KC, Christofides E, Yen J, et al. If you build it, they will come: unintended future uses of organised health data collections. BMC Med Ethics. 2016;17(1):54. https://doi.org/10.1186/s12910-016-0137-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Prasad A, Sorber J, Stablein T, Anthony D, Kotz D. Understanding user privacy preferences for mHealth data sharing. In: mHealth multidisciplinary verticals; 2014.

    Google Scholar 

  35. Weinberg B, Milne G, Andonova Y, Hajjat F. Internet of things: convenience vs. privacy and secrecy. Bus Horiz. 2015;58(6):615–24.

    Article  Google Scholar 

  36. Capon H, Hall W, Fry C, Carter A. Realising the technological promise of smartphones in addiction research and treatment: an ethical review. Int J Drug Policy. 2016;36:47–57. https://doi.org/10.1016/j.drugpo.2016.05.013.

    Article  PubMed  Google Scholar 

  37. Stip E, Rialle V. Environmental cognitive remediation in schizophrenia: ethical implications of “smart home” technology. Can J Psychiatr. 2005;50(5):281–91. https://doi.org/10.1177/070674370505000509.

    Article  Google Scholar 

  38. Baldini G, Botterman M, Neisse R, Tallacchini M. Ethical design in the internet of things. Sci Eng Ethics. 2018;24(3):905–25. https://doi.org/10.1007/s11948-016-9754-5.

    Article  PubMed  Google Scholar 

  39. Kang HG, Mahoney DF, Hoenig H, et al. In situ monitoring of health in older adults: technologies and issues. J Am Geriatr Soc. 2010;58(8):1579–86. https://doi.org/10.1111/j.1532-5415.2010.02959.x.

    Article  PubMed  Google Scholar 

  40. Kaplan B. How should health data be used? Camb Q Healthc Ethics. 2016;25(2):312–29. https://doi.org/10.1017/S0963180115000614.

    Article  PubMed  Google Scholar 

  41. Paton C, Hansen M, Fernandez-Luque L, Lau AY. Self-tracking, social media and personal health records for patient empowered self-care. Contribution of the IMIA social media working group. Yearb Med Inform. 2012;7:16–24.

    CAS  PubMed  Google Scholar 

  42. Savastano M, Hovsto A, Pharow P, Blobel B. Security, safety, and related technology—the triangle of eHealth service provision. Stud Health Technol Inform. 2008;136:709–14.

    PubMed  Google Scholar 

  43. Smith RJ, Grande D, Merchant RM. Transforming scientific inquiry: tapping into digital data by building a culture of transparency and consent. Acad Med. 2016;91(4):469–72. https://doi.org/10.1097/ACM.0000000000001022.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bietz MJ, Bloss CS, Calvert S, et al. Opportunities and challenges in the use of personal health data for health research. J Am Med Inform Assoc. 2016;23(e1):e42–8. https://doi.org/10.1093/jamia/ocv118.

    Article  PubMed  Google Scholar 

  45. Bramstedt KA. When microchip implants do more than drug delivery: blending, blurring, and bundling of protected health information and patient monitoring. Technol Health Care. 2005;13(3):193–8.

    PubMed  Google Scholar 

  46. Cato KD, Bockting W, Larson E. Did i tell you that? Ethical issues related to using computational methods to discover non-disclosed patient characteristics. J Empir Res Hum Res Ethics. 2016;11(3):214–9. https://doi.org/10.1177/1556264616661611.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Essen A. The two facets of electronic care surveillance: an exploration of the views of older people who live with monitoring devices. Soc Sci Med. 2008;67(1):128–36. https://doi.org/10.1016/j.socscimed.2008.03.005.

    Article  PubMed  Google Scholar 

  48. Olff M. Mobile mental health: a challenging research agenda. Eur J Psychotraumatol. 2015;6:27882. https://doi.org/10.3402/ejpt.v6.27882.

    Article  PubMed  Google Scholar 

  49. Kelly D, Donnelly S, Caulfield B. Smartphone derived movement profiles to detect changes in health status in COPD patients—a preliminary investigation. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:462–5. https://doi.org/10.1109/EMBC.2015.7318399.

    Article  PubMed  Google Scholar 

  50. Boye N. Co-production of health enabled by next generation personal health systems. Stud Health Technol Inform. 2012;177:52–8.

    PubMed  Google Scholar 

  51. Draper H, Sorell T. Telecare, remote monitoring and care. Bioethics. 2013;27(7):365–72. https://doi.org/10.1111/j.1467-8519.2012.01961.x.

    Article  PubMed  Google Scholar 

  52. Kovach KA, Aubrecht JA, Dew MA, Myers B, Dabbs AD. Data safety and monitoring for research involving remote health monitoring. Telemed J E Health. 2011;17(7):574–9. https://doi.org/10.1089/tmj.2010.0219.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Klasnja P, Consolvo S, Choudhury T, Beckwith R, Hightower J. Exploring privacy concerns about personal sensing. In: Tokuda H, Beigl M, Friday A, Brush AJB, Tobe Y, editors. Pervasive computing. Berlin, Heidelberg: Springer; 2009. p. 176–83.

    Chapter  Google Scholar 

  54. Kosta E, Pitkanen O, Niemela M, Kaasinen E. Mobile-centric ambient intelligence in health- and homecare-anticipating ethical and legal challenges. Sci Eng Ethics. 2010;16(2):303–23. https://doi.org/10.1007/s11948-009-9150-5.

    Article  PubMed  Google Scholar 

  55. Carter A, Liddle J, Hall W, Chenery H. Mobile phones in research and treatment: ethical guidelines and future directions. JMIR Mhealth Uhealth. 2015;3(4):e95. https://doi.org/10.2196/mhealth.4538.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Henderson EM, Law EF, Palermo TM, Eccleston C. Case study: ethical guidance for pediatric e-health research using examples from pain research with adolescents. J Pediatr Psychol. 2012;37(10):1116–26. https://doi.org/10.1093/jpepsy/jss085.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pharow P, Blobel B. Mobile health requires mobile security: challenges, solutions, and standardization. Stud Health Technol Inform. 2008;136:697–702.

    PubMed  Google Scholar 

  58. Lee LM, Heilig CM, White A. Ethical justification for conducting public health surveillance without patient consent. Am J Public Health. 2012;102(1):38–44. https://doi.org/10.2105/AJPH.2011.300297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kramer DB, Fu K. Cybersecurity concerns and medical devices: lessons from a pacemaker advisory. JAMA. 2017;318(21):2077–8. https://doi.org/10.1001/jama.2017.15692.

    Article  PubMed  Google Scholar 

  60. Prasad A, Sorber J, Stablein T, Anthony D, Kotz D. Understanding sharing preferences and behavior for mHealth devices. Institute for Security, Technology and Society, Dartmouth College; 2012.

    Google Scholar 

  61. Cordasco KM, Rockville MD. Making health care safer II. An updated critical analysis of the evidence for patient safety practices. In: Obtaining informed consent from patients: brief update review; 2013.

    Google Scholar 

  62. Morey T, Forbath TT, Schoop A. Customer data: designing for transparency and trust. Harv Bus Rev. 2015.

    Google Scholar 

  63. Godard B, Schmidtke J, Cassiman JJ, Ayme S. Data storage and DNA banking for biomedical research: informed consent, confidentiality, quality issues, ownership, return of benefits. A professional perspective. Eur J Hum Genet. 2003;11(Suppl 2):S88–122. https://doi.org/10.1038/sj.ejhg.5201114.

    Article  PubMed  Google Scholar 

  64. Rumbold JM, Pierscionek B. The effect of the general data protection regulation on medical research. J Med Internet Res. 2017;19(2):e47. https://doi.org/10.2196/jmir.7108.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mostert M, Bredenoord AL, Biesaart MC, van Delden JJ. Big Data in medical research and EU data protection law: challenges to the consent or anonymise approach. Eur J Hum Genet. 2016;24(7):956–60. https://doi.org/10.1038/ejhg.2015.239.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marike L. D. Broekman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Senders, J.T., Maher, N., Hulsbergen, A.F.C., Lamba, N., Bredenoord, A.L., Broekman, M.L.D. (2019). The Ethics of Passive Data and Digital Phenotyping in Neurosurgery. In: Broekman, M. (eds) Ethics of Innovation in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-05502-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05502-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05501-1

  • Online ISBN: 978-3-030-05502-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics