Skip to main content

Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Biodegradable polymers with micro and nano-cellulose present attractive properties and the highly reactive surface of cellulose resulting from the high density of hydroxyl groups are great at this scale. Therefore, this chapter has the objective to discuss cellulosic nanostructured films, types of processing involving the production of bionanocomposites and other important applications of them in non-biocomposite areas. A brief description of the definition, terminology, and methods of obtaining cellulose nanostructures as procedures used in the functionalization of the cellulose surface to improve the hydrophilic character and the compatibility with polymer matrices will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdul Khalil HPS, Saurabh CK, Adnan AS et al (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr Polym 150:216–226

    Article  Google Scholar 

  2. Abitbol T, Rivkin A, Cao Y et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88

    Article  CAS  Google Scholar 

  3. Agustin MB, Nakatsubo F, Yano H (2016) Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization. Cellulose 23:2887–2903. https://doi.org/10.1007/s10570-016-1004-0

    Article  CAS  Google Scholar 

  4. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565. https://doi.org/10.1016/j.compscitech.2007.05.044

    Article  CAS  Google Scholar 

  5. Araujo MAM, Sena Neto AR, Hage E et al (2015) Curaua leaf fiber (Ananas comosus var. erectifolius) reinforcing poly(lactic acid) biocomposites: formulation and performance. Polym Compos 36:1520–1530. https://doi.org/10.1002/pc.23059

    Article  CAS  Google Scholar 

  6. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671. https://doi.org/10.1016/j.indcrop.2016.03.013

    Article  CAS  Google Scholar 

  7. Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 132:1–8. https://doi.org/10.1016/j.carbpol.2015.06.043

    Article  CAS  Google Scholar 

  8. Bahrin EK, Baharuddin AS, Ibrahim MF et al (2012) Physicochemical property changes and enzymatic hydrolysis enhancement of oil palm empty fruit bunches treated with superheated steam. BioResources 7:1784–1801. https://doi.org/10.15376/biores.7.2.1784-1801

    Article  Google Scholar 

  9. Behrens AM, Casey BJ, Sikorski MJ et al (2014) In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett 3:249–254. https://doi.org/10.1021/mz500049x

    Article  CAS  Google Scholar 

  10. Belbekhouche S, Bras J, Siqueira G et al (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748. https://doi.org/10.1016/j.carbpol.2010.10.036

    Article  CAS  Google Scholar 

  11. van der Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromol 8:1353–1357. https://doi.org/10.1021/bm061104q

    Article  CAS  Google Scholar 

  12. Bhardwaj N, Kundu SC (2010) Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  13. Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33:1085–1095. https://doi.org/10.1002/btpr.2486

    Article  CAS  Google Scholar 

  14. Bufalino L (2014) Filmes de nanocelulose a partir de resíduos madeireiros da Amazônia. UFLA 106

    Google Scholar 

  15. Carmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). J Polym Environ 23:83–89. https://doi.org/10.1007/s10924-014-0666-7

    Article  CAS  Google Scholar 

  16. Chen Y, Wu Q, Huang B et al (2015) Isolation and characteristics of cellulose and nanocellulose from lotus leaf stalk agro-wastes. BioResources 10:684–696

    Google Scholar 

  17. Chen L, Zhu JY, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. https://doi.org/10.1039/C6GC00687F

    Article  CAS  Google Scholar 

  18. Chin KM, Sung Ting S, Ong HL, Omar M (2018) Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: a review. J Appl Polym Sci 135. https://doi.org/10.1002/app.46065

  19. Claro PIC, Corrêa AC, de Campos A et al (2018) Curaua and eucalyptus nanofibers films by continuous casting: mechanical and thermal properties. Carbohydr Polym 181:1093–1101. https://doi.org/10.1016/j.carbpol.2017.11.037

    Article  CAS  Google Scholar 

  20. Corradini E, Teixeira EM, Paladin PD et al (2009) Thermal stability and degradation kinetic study of white and colored cotton fibers by thermogravimetric analysis. J Therm Anal Calorim 97:415–419

    Article  CAS  Google Scholar 

  21. Corradini E, Imam SH, Agnelli JM, Mattoso LHC (2009a) Effect of coconut, sisal and jute fibers on the properties of starch/gluten/glycerol matrix. J Polym Environ 17:1–9. https://doi.org/10.1007/s10924-009-0115-1

  22. Corrêa AC, de Morais Teixeira E, Carmona VB et al (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322. https://doi.org/10.1007/s10570-013-0132-z

    Article  CAS  Google Scholar 

  23. Corrêa AC, de Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192. https://doi.org/10.1007/s10570-010-9453-3

    Article  CAS  Google Scholar 

  24. Costa SV, Pingel P, Janietz S, Nogueira AF (2016) Inverted organic solar cells using nanocellulose as substrate. J Appl Polym Sci 133. https://doi.org/10.1002/app.43679

  25. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromol 8:1–12

    Article  CAS  Google Scholar 

  26. da Silva Parize DD, Foschini MM, de Oliveira JE et al (2016) Solution blow spinning: parameters optimization and effects on the properties of nanofibers from poly(lactic acid)/dimethyl carbonate solutions. J Mater Sci 51:4627–4638. https://doi.org/10.1007/s10853-016-9778-x

  27. da Silva Parize DD, de Oliveira JE, Williams T et al (2017) Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp. Carbohydr Polym 174:923–932. https://doi.org/10.1016/j.carbpol.2017.07.019

  28. Davoodi MM, Sapuan SM, Ahmad D et al (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932. https://doi.org/10.1016/j.matdes.2010.05.021

    Article  CAS  Google Scholar 

  29. de Campos A, Teodoro KBR, Teixeira EM et al (2013) Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing. Polym Eng Sci 53:800–808. https://doi.org/10.1002/pen.23324

  30. de Campos A, Correa AC, Cannella D et al (2013) Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500. https://doi.org/10.1007/s10570-013-9909-3

  31. de Campos A, Tonoli GHD, Marconcini JM et al (2013) TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J Polym Environ 21:1–7. https://doi.org/10.1007/s10924-012-0512-8

  32. de Campos A, de Neto ARS, Rodrigues VB et al (2017a) Production of cellulose nanowhiskers from oil palm mesocarp fibers by acid hydrolysis and microfluidization. J Nanosci Nanotechnol 17:4970–4976. https://doi.org/10.1166/jnn.2017.13451

  33. de Campos A, Sena Neto AR, Rodrigues VB et al (2017b) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydr Polym 175:330–336. https://doi.org/10.1016/j.carbpol.2017.07.080

  34. de Morais Teixeira E, Pasquini D, Curvelo AAS et al (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431. https://doi.org/10.1016/j.carbpol.2009.04.034

  35. de Morais Teixeira E, Corrêa AC, Manzoli A et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606. https://doi.org/10.1007/s10570-010-9403-0

  36. de Morais Teixeira E, Bondancia TJ, Teodoro KBR et al (2011) Sugarcane bagasse whiskers: Extraction and characterizations. Ind Crops Prod 33:63–66. https://doi.org/10.1016/j.indcrop.2010.08.009

  37. de Morais Teixeira E, de Campos A, Marconcini JM et al (2014) Starch/fiber/poly(lactic acid) foam and compressed foam composites. RSC Adv 4:6616. https://doi.org/10.1039/c3ra47395c

  38. dos Santos RM, Flauzino Neto WP, Silvério HA et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714. https://doi.org/10.1016/j.indcrop.2013.08.049

  39. Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos Trans R Soc A Math Phys Eng Sci 376:20170040. https://doi.org/10.1098/rsta.2017.0040

    Article  CAS  Google Scholar 

  40. Dufresne A, Castaño J (2016) Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch/Staerke 1–19. https://doi.org/10.1002/star.201500307

  41. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  42. El-Wakil NA, Hassan EA, Abou-Zeid RE, Dufresne A (2015) Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr Polym 124:337–346. https://doi.org/10.1016/j.carbpol.2015.01.076

    Article  CAS  Google Scholar 

  43. Fahma F, Iwamoto S, Hori N et al (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985. https://doi.org/10.1007/s10570-010-9436-4

    Article  CAS  Google Scholar 

  44. Filson PB, Dawson-Andoh BE (2009) Characterization of sugars from model and enzyme-mediated pulp hydrolyzates using high-performance liquid chromatography coupled to evaporative light scattering detection. Bioresour Technol 100:6661–6664. https://doi.org/10.1016/j.biortech.2008.12.067

    Article  CAS  Google Scholar 

  45. Flauzino Neto WP, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488. https://doi.org/10.1016/j.indcrop.2012.06.041

    Article  CAS  Google Scholar 

  46. Forsman N, Lozhechnikova A, Khakalo A et al (2017) Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydr Polym 173:392–402. https://doi.org/10.1016/j.carbpol.2017.06.007

    Article  CAS  Google Scholar 

  47. Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270. https://doi.org/10.1007/s10570-005-9039-7

    Article  CAS  Google Scholar 

  48. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhesion Sci Technol 22:545–567. https://doi.org/10.1163/156856108X295509

  49. Gaspar D, Fernandes SN, De Oliveira AG et al (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25. https://doi.org/10.1088/0957-4484/25/9/094008

  50. Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65. https://doi.org/10.1016/j.carbpol.2014.01.013

    Article  CAS  Google Scholar 

  51. González K, Retegi A, González A et al (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90. https://doi.org/10.1016/j.carbpol.2014.09.055

    Article  CAS  Google Scholar 

  52. Gómez HC, Serpa A, Velásquez-Cock J et al (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll. 57:178–186

    Article  Google Scholar 

  53. Harmaen AS, Khalina A, Azowa I et al (2015) Thermal and biodegradation properties of poly(lactic acid)/fertilizer/oil palm fibers blends biocomposites. Polym Compos 36:576–583. https://doi.org/10.1002/pc.22974

    Article  CAS  Google Scholar 

  54. Hassan ML, Bras J, Hassan EA, et al (2012) Polycaprolactone/ Modified Bagasse Whisker Nanocomposites with Improved Moisture-Barrier and Biodegradability Properties. J Appl Polym Sci 1–10. https://doi.org/10.1002/app

  55. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  56. Henrique MA, Silvério HA, Flauzino Neto WP, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manage 121:202–209. https://doi.org/10.1016/j.jenvman.2013.02.054

    Article  CAS  Google Scholar 

  57. Hindi SSZ (2017) Microcrystalline cellulose: the inexhaustible treasure for pharmaceutical industry. Nanosci Nanotechnol Res 4:17–24. https://doi.org/10.12691/nnr-4-1-3

  58. Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581. https://doi.org/10.1016/j.carbpol.2010.10.016

    Article  CAS  Google Scholar 

  59. Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233

    CAS  Google Scholar 

  60. Hubbe M, Rojas OJ, Lucia L, Sain M (2008) Cellulosic Nanocomposites: a review. BioResources 3:929–980. https://doi.org/10.15376/biores.3.3.929-980

  61. Ibrahim Nor Azowa, Hadithon Kamarul Arifin, Abdan K (2010) Effect of fiber treatment on mechanical properties of kenaf fiber-Ecoflex composites. J Reinf Plast Compos 29:2192–2198. https://doi.org/10.1177/0731684409347592

    Article  CAS  Google Scholar 

  62. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/C0NR00583E

    Article  CAS  Google Scholar 

  63. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466. https://doi.org/10.1007/s00339-007-4175-6

    Article  CAS  Google Scholar 

  64. Jia C, Chen L, Shao Z et al (2017) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24:2483–2498. https://doi.org/10.1007/s10570-017-1277-y

    Article  CAS  Google Scholar 

  65. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99. https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  CAS  Google Scholar 

  66. Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2014) Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr Polym 110:70–77. https://doi.org/10.1016/j.carbpol.2014.03.067

    Article  CAS  Google Scholar 

  67. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. https://doi.org/10.1007/s00396-013-3112-9

    Article  CAS  Google Scholar 

  68. Kalia S, Dufresne A, Cherian BM t al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011

    Google Scholar 

  69. Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575

    Article  CAS  Google Scholar 

  70. Kargarzadeh H, Mariano M, Huang J et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polym (United Kingdom) 132:368–393

    CAS  Google Scholar 

  71. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345. https://doi.org/10.1016/j.carbpol.2010.04.063

    Article  CAS  Google Scholar 

  72. Khalil HPSA, Davoudpour Y, Aprilia NAS, Mustapha A, Hossain S, Islam N, Dungani R (2014) Nanocellulose-based polymer nanocomposite: isolation, characterization and applications. In: nanocellulose polymer nanocomposites. John Wiley & Sons, Inc., p 273–309. ISBN: 978-1-118-87190-4

    Google Scholar 

  73. Kim JH, Shim BS, Kim HS et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng. Manuf Green Technol 2:197–213

    Article  Google Scholar 

  74. Lam NT, Chollakup R, Smitthipong W et al (2017) Characterization of cellulose nanocrystals extracted from sugarcane bagasse for potential biomedical materials. Sugar Tech 19:539–552. https://doi.org/10.1007/s12355-016-0507-1

    Article  CAS  Google Scholar 

  75. Lamaming J, Hashim R, Sulaiman O et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208. https://doi.org/10.1016/j.carbpol.2015.03.043

    Article  CAS  Google Scholar 

  76. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  77. Lee KY, Quero F, Blaker JJ et al (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605. https://doi.org/10.1007/s10570-011-9525-z

    Article  CAS  Google Scholar 

  78. Lendvai L, Karger-Kocsis J, Kmetty Á, Drakopoulos SX (2016) Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J Appl Polym Sci 133. https://doi.org/10.1002/app.42397

  79. Lif A, Stenstad P, Syverud K et al (2010) Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. J Colloid Interface Sci 352:585–592. https://doi.org/10.1016/j.jcis.2010.08.052

    Article  CAS  Google Scholar 

  80. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  81. Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842. https://doi.org/10.1016/j.carbpol.2010.10.047

    Article  CAS  Google Scholar 

  82. Liu Q, Lu Y, Aguedo M et al (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5:6183–6191. https://doi.org/10.1021/acssuschemeng.7b01108

    Article  CAS  Google Scholar 

  83. Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromol 6:2732–2739. https://doi.org/10.1021/bm050222v

    Article  CAS  Google Scholar 

  84. Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer (Guildf) 47:6285–6292. https://doi.org/10.1016/j.polymer.2006.07.013

    Article  CAS  Google Scholar 

  85. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  86. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899. https://doi.org/10.1021/bm301430j

    Article  CAS  Google Scholar 

  87. Miao X, Lin J, Tian F et al (2016) Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohydr Polym 136:841–850. https://doi.org/10.1016/j.carbpol.2015.09.056

    Article  CAS  Google Scholar 

  88. El Miri N, Abdelouahdi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167. https://doi.org/10.1016/j.carbpol.2015.04.051

    Article  CAS  Google Scholar 

  89. Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949. https://doi.org/10.1016/j.jscs.2018.02.005

  90. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites

    Google Scholar 

  91. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97. https://doi.org/10.1007/s00339-004-2932-3

    Article  CAS  Google Scholar 

  92. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  93. Nikmatin S, Syafiuddin A, Irwanto DAY (2017) Properties of oil palm empty fruit bunch-filled recycled acrylonitrile butadiene styrene composites: effect of shapes and filler loadings with random orientation. BioResources 12:1090–1101. https://doi.org/10.15376/biores.12.1.1090-1101

    Article  CAS  Google Scholar 

  94. Oliveira JE, Moraes EA, Costa RGF et al (2011) Nano and submicrometric fibers of poly(D, L -lactide) obtained by solution blow spinning: process and solution variables. J Appl Polym Sci 122:3396–3405. https://doi.org/10.1002/app.34410

    Article  CAS  Google Scholar 

  95. Pasquini D, de Teixeira EM, da Curvelo AA et al (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68:193–201. https://doi.org/10.1016/j.compscitech.2007.05.009

  96. Pasquini D, de Teixeira EM, da Curvelo AA S et al (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32:486–490. https://doi.org/10.1016/j.indcrop.2010.06.022

  97. Pelissari FM, Sobral PJDA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432. https://doi.org/10.1007/s10570-013-0138-6

    Article  CAS  Google Scholar 

  98. Peng Y, Gardner DJ, Han Y et al (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392. https://doi.org/10.1007/s10570-013-0019-z

    Article  CAS  Google Scholar 

  99. Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: ACS Symposium Series. pp 132–150

    Google Scholar 

  100. Pommet M, Juntaro J, Heng JYY et al (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromol 9:1643–1651. https://doi.org/10.1021/bm800169g

    Article  CAS  Google Scholar 

  101. Pääkko M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. https://doi.org/10.1021/bm061215p

    Article  CAS  Google Scholar 

  102. Qu P, Zhou Y, Zhang X et al (2012) Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J Appl Polym Sci 125:3084–3091. https://doi.org/10.1002/app.36360

    Article  CAS  Google Scholar 

  103. Ran F, Tan Y (2018) Polyaniline-based composites and nanocomposites. Elsevier, Amsterdam

    Google Scholar 

  104. Rodrigues APH, de Souza SD, Gil CSB et al (2017) Biobased nanocomposites based on collagen, cellulose nanocrystals, and plasticizers. J Appl Polym Sci 134:. https://doi.org/10.1002/app.44954

  105. Rojas J, Bedoya M, Ciro Y (2015) World’ s largest science, technology & medicine open access book publisher current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellul Asp Curr Trends 193–228. https://doi.org/10.5772/61334

  106. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671. https://doi.org/10.1021/bm034519+

  107. Rosa MF, Medeiros ES, Malmonge J a., et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. https://doi.org/10.1016/j.carbpol.2010.01.059

  108. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046. https://doi.org/10.1039/b808639g

    Article  CAS  Google Scholar 

  109. Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014) Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater Res Innov 18:S6-322–S6-325. https://doi.org/10.1179/1432891714z.000000000977

  110. Santana JS, do Rosário JM, Pola CC et al (2017) Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.44637

  111. Scatolino MV, Bufalino L, Mendes LM et al (2017) Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Sci Technol 51:1095–1115. https://doi.org/10.1007/s00226-017-0927-4

    Article  CAS  Google Scholar 

  112. Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26. https://doi.org/10.1016/j.carbpol.2015.08.082

    Article  CAS  Google Scholar 

  113. Silvério HA, Flauzino Neto WP, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436. https://doi.org/10.1016/j.indcrop.2012.10.014

    Article  CAS  Google Scholar 

  114. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432. https://doi.org/10.1021/bm801193d

    Article  CAS  Google Scholar 

  115. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources 5:727–740. https://doi.org/10.15376/biores.5.2.727-740

    Article  CAS  Google Scholar 

  116. Siqueira G, Fraschini C, Bras J et al (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227. https://doi.org/10.1016/j.eurpolymj.2011.09.014

    Article  CAS  Google Scholar 

  117. Siqueira G, Tapin-Lingua S, Bras J et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. https://doi.org/10.1007/s10570-010-9449-z

    Article  CAS  Google Scholar 

  118. Souza SF, Lopez A, Cai JHUI, Wu C (2010) Nanocellulose from curava fibers and their nanocomposites. Mol Crust Liq Cryst 522:342–352. https://doi.org/10.1080/15421401003722955

    Article  CAS  Google Scholar 

  119. Spinella S, Maiorana A, Qian Q et al (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain Chem Eng 4:1538–1550. https://doi.org/10.1021/acssuschemeng.5b01489

    Article  CAS  Google Scholar 

  120. Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45. https://doi.org/10.1007/s10570-007-9143-y

    Article  CAS  Google Scholar 

  121. Tan L, Mandley SJ, Peijnenburg W et al (2018) Combining ex-ante LCA and EHS screening to assist green design: a case study of cellulose nanocrystal foam. J Clean Prod 178:494–506. https://doi.org/10.1016/j.jclepro.2017.12.243

    Article  CAS  Google Scholar 

  122. Thomas MG, Abraham E, Jyotishkumar P et al (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777. https://doi.org/10.1016/j.ijbiomac.2015.08.053

    Article  CAS  Google Scholar 

  123. Tonoli GHD, de Morais Teixeira E, Corrêa C et al (2012a) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2012.02.052

  124. Tonoli GHD, de Morais Teixeira E, Corrêa CC et al (2012b) Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydr Polym 89:80–88. https://doi.org/10.1016/j.carbpol.2012.02.052

  125. Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804

    Article  CAS  Google Scholar 

  126. Tutak W, Sarkar S, Lin-Gibson S et al (2013) The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials 34:2389–2398. https://doi.org/10.1016/j.biomaterials.2012.12.020

    Article  CAS  Google Scholar 

  127. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412. https://doi.org/10.1016/j.rser.2014.08.050

    Article  CAS  Google Scholar 

  128. Uschanov P, Johansson LS, Maunu SL, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404. https://doi.org/10.1007/s10570-010-9478-7

    Article  CAS  Google Scholar 

  129. Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nano fi brils: a comparative study on their microstructures and e ff ects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. https://doi.org/10.1021/am302624t

    Article  CAS  Google Scholar 

  130. Yarbrough JM, Zhang R, Mittal A et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109. https://doi.org/10.1021/acsnano.7b00086

    Article  CAS  Google Scholar 

  131. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12:2617–2625. https://doi.org/10.1021/bm200401p

    Article  CAS  Google Scholar 

  132. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093. https://doi.org/10.1016/j.carbpol.2009.10.045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana de Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Campos, A., Corrêa, A.C., Claro, P.I.C., de Morais Teixeira, E., Marconcini, J.M. (2019). Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_1

Download citation

Publish with us

Policies and ethics