Skip to main content

Textile-Reinforced Scaffolds for Vascular Tissue Engineering

  • Reference work entry
  • First Online:
Tissue-Engineered Vascular Grafts

Abstract

A great deal of research is focusing nowadays in the development of vascular substitutes to cover the unmet clinical need of small-caliber grafts. A fundamental understanding of the design principles that dictate the functionality of the native tissue and the transfer of such principles to engineer bioinspired vascular grafts represents an appealing approach. The recognition of the native vessels as textile-reinforced entities elevates textile technologies (such as knitting, weaving, electrospinning, melt electrospinning) as an attractive platform for vascular engineering. The combination of biomimetic textiles with cell-interactive matrices constitutes the main pillar of the biohybrid concept. In this chapter, we will review the current state of the art on textile-reinforced vascular grafts in the context of tissue engineering. We will also illustrate how the progress made in biomimicry, biofabrication, and material’s science disciplines constitutes a solid scenario for the development of advanced biohybrid vascular conduits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott WM, Megerman J, Hasson JE, L'Italien G, Warnock DF (1987) Effect of compliance mismatch on vascular graft patency. J Vasc Surg 5(2):376–382

    CAS  PubMed  Google Scholar 

  • Akbari M, Tamayol A, Laforte V, Annabi N, Hassani Najafabadi A, Khademhosseini A, Juncker D (2014) Composite living fibers for creating tissue constructs using textile techniques. Adv Funct Mater 24(26):4060–4067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari M, Tamayol A, Bagherifard S, Serex L, Mostafalu P, Faramarzi N, Mohammadi MH, Khademhosseini A (2016) Textile technologies and tissue engineering: a path toward organ weaving. Adv Healthc Mater 5(7):751–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akentjew TL, Terraza C, Suazo C, Maksimcuka J, Wilkens CA, Vargas F, Zavala G, Ocaña M, Enrione J, García-Herrera CM, Valenzuela LM, Blaker JJ, Khoury M, Acevedo JP (2019) Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries. Nat Commun 10(1):3098–3098

    PubMed  PubMed Central  Google Scholar 

  • Alessandrino A, Chiarini A, Biagiotti M, Dal Prà I, Bassani GA, Vincoli V, Settembrini P, Pierimarchi P, Freddi G, Armato U (2019) Three-layered silk fibroin tubular scaffold for the repair and regeneration of small caliber blood vessels: from design to in vivo pilot tests. Front Bioeng Biotechnol 7:356–356

    PubMed  PubMed Central  Google Scholar 

  • Aytemiz D, Sakiyama W, Suzuki Y, Nakaizumi N, Tanaka R, Ogawa Y, Takagi Y, Nakazawa Y, Asakura T (2013) Small-diameter silk vascular grafts (3 mm diameter) with a double-raschel knitted silk tube coated with silk fibroin sponge. Adv Healthc Mater 2(2):361–368

    CAS  PubMed  Google Scholar 

  • Bai L, Zhao J, Li Q, Guo J, Ren X, Xia S, Zhang W, Feng Y (2019) Biofunctionalized electrospun PCL-PIBMD/SF vascular grafts with PEG and cell-adhesive peptides for endothelialization. Macromol Biosci 19(2):1800386

    Google Scholar 

  • Ballyk PD, Walsh C, Butany J, Ojha M (1997) Compliance mismatch may promote graft–artery intimal hyperplasia by altering suture-line stresses. J Biomech 31(3):229–237

    Google Scholar 

  • Bas O, Catelas I, De-Juan-Pardo EM, Hutmacher DW (2018) The quest for mechanically and biologically functional soft biomaterials via soft network composites. Adv Drug Deliv Rev 132:214–234

    CAS  PubMed  Google Scholar 

  • Best C, Tara S, Wiet M, Reinhardt J, Pepper V, Ball M, Yi T, Shinoka T, Breuer C (2017) Deconstructing the tissue engineered vascular graft: evaluating scaffold pre-wetting, conditioned media incubation, and determining the optimal mononuclear cell source. ACS Biomater Sci Eng 3(9):1972–1979

    CAS  PubMed  Google Scholar 

  • Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X, Shinoka T, Breuer CK (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248(3):370–377

    PubMed  PubMed Central  Google Scholar 

  • Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166

    CAS  Google Scholar 

  • Caro CG, Cheshire NJ, Watkins N (2005) Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J R Soc Interface 2(3):261–266

    PubMed  PubMed Central  Google Scholar 

  • Cattaneo I, Figliuzzi M, Azzollini N, Catto V, Fare S, Tanzi MC, Alessandrino A, Freddi G, Remuzzi A (2013) In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold. Int J Artif Organs 36(3):166–174

    PubMed  Google Scholar 

  • Catto V, Fare S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC (2015) Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Mater Sci Eng C Mater Biol Appl 54:101–111

    CAS  PubMed  Google Scholar 

  • Chung S, Ingle NP, Montero GA, Kim SH, King MW (2010) Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater 6(6):1958–1967

    CAS  PubMed  Google Scholar 

  • Dalton PD (2017) Melt electrowriting with additive manufacturing principles. Curr Opin Biomed Eng 2:49–57

    Google Scholar 

  • Daristotle JL, Behrens AM, Sandler AD, Kofinas P (2016) A review of the fundamental principles and applications of solution blow spinning. ACS Appl Mater Interfaces 8(51):34951–34963

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Bakey ME, Cooley DA, Crawford ES, Morris GC Jr (1958) Clinical application of a new flexible knitted dacron arterial substitute. Am Surg 24(12):862–869

    Google Scholar 

  • de Torre IG, Wolf F, Santos M, Rongen L, Alonso M, Jockenhoevel S, Rodriguez-Cabello JC, Mela P (2015) Elastin-like recombinamer-covered stents: towards a fully biocompatible and non-thrombogenic device for cardiovascular diseases. Acta Biomater 12:146–155

    PubMed  Google Scholar 

  • Eble JA, Niland S (2009) The extracellular matrix of blood vessels. Curr Pharm Des 15(12):1385–1400

    CAS  PubMed  Google Scholar 

  • Fernández-Colino A, Wolf F, Moreira R, Rütten S, Schmitz-Rode T, Rodríguez-Cabello JC, Jockenhoevel S, Mela P (2019a) Layer-by-layer biofabrication of coronary covered stents with clickable elastin-like recombinamers. Eur Polym J 121:109334

    Google Scholar 

  • Fernández-Colino A, Wolf F, Rütten S, Schmitz-Rode T, Rodríguez-Cabello JC, Jockenhoevel S, Mela P (2019b) Small caliber compliant vascular grafts based on elastin-like recombinamers for in situ tissue engineering. Front Bioeng Biotechnol 7(340):1–13

    Google Scholar 

  • Francois S, Sarra-Bournet C, Jaffre A, Chakfe N, Durand B, Laroche G (2010) Characterization of an air-spun poly(L-lactic acid) nanofiber mesh. J Biomed Mater Res B Appl Biomater 93(2):531–543

    PubMed  Google Scholar 

  • Freischlag JA, Moore WS (1990) Clinical experience with a collagen-impregnated knitted Dacron vascular graft. Ann Vasc Surg 4(5):449–454

    CAS  PubMed  Google Scholar 

  • Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90(14):144502

    PubMed  Google Scholar 

  • Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N (2016) Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/Chitosan scaffolds in a sheep model. PLoS One 11(7):e0158555

    PubMed  PubMed Central  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    PubMed  Google Scholar 

  • Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11(8):1165–1188

    CAS  Google Scholar 

  • Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH (2013) Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg 257(5):824–833

    PubMed  Google Scholar 

  • Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25

    CAS  PubMed  Google Scholar 

  • Hrynevich A, Elci BS, Haigh JN, McMaster R, Youssef A, Blum C, Blunk T, Hochleitner G, Groll J, Dalton PD (2018) Dimension-Based Design of Melt Electrowritten Scaffolds. Small 14(22):e1800232

    Google Scholar 

  • Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen–chitosan–TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B: Biointerfaces 82(2):307–315

    CAS  PubMed  Google Scholar 

  • Ibanez-Fonseca A, Flora T, Acosta S, Rodriguez-Cabello JC (2019) Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 84:111–126

    CAS  PubMed  Google Scholar 

  • Ito S, Ishimaru S, Wilson SE (1998) Application of coacervated alpha-elastin to arterial prostheses for inhibition of anastomotic intimal hyperplasia. ASAIO J 44(5):M501–M505

    CAS  PubMed  Google Scholar 

  • Jaramillo J, Valencia-Rivero KT, Cedano-Serrano FJ, Lopez R, Sandoval N, Briceno JC (2018) Design and evaluation of a structural reinforced small intestinal submucosa vascular graft for hemodialysis access in a porcine model. ASAIO J 64(2):270–277

    PubMed  Google Scholar 

  • Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M (2001) Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19(4):424–430

    CAS  PubMed  Google Scholar 

  • Jordan SW, Haller CA, Sallach RE, Apkarian RP, Hanson SR, Chaikof EL (2007) The effect of a recombinant elastin-mimetic coating of an ePTFE prosthesis on acute thrombogenicity in a baboon arteriovenous shunt. Biomaterials 28(6):1191–1197

    CAS  PubMed  Google Scholar 

  • Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ (2010) Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31(15):4313–4321

    CAS  PubMed  Google Scholar 

  • Jungst T, Muerza-Cascante ML, Brown TD, Standfest M, Hutmacher DW, Groll J, Dalton PD (2015) Melt electrospinning onto cylinders: effects of rotational velocity and collector diameter on morphology of tubular structures. Polym Int 64(9):1086–1095

    CAS  Google Scholar 

  • Jungst T, Pennings I, Schmitz M, Rosenberg AJWP, Groll J, Gawlitta D (2019) Heterotypic scaffold design orchestrates primary cell organization and phenotypes in cocultured small diameter vascular grafts. Adv Funct Mater 29(43):1905987

    CAS  Google Scholar 

  • Keijdener H, Konrad J, Hoffmann B, Gerardo-Nava J, Rutten S, Merkel R, Vazquez-Jimenez J, Brook GA, Jockenhoevel S, Mela P (2019) A bench-top molding method for the production of cell-laden fibrin micro-fibers with longitudinal topography. J Biomed Mater Res B Appl Biomater 108:1198–1212

    Google Scholar 

  • Kidson IG (1983) The effect of wall mechanical properties on patency of arterial grafts. Ann R Coll Surg Engl 65(1):24–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiselev P, Rosell-Llompart J (2012) Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci 125(3):2433–2441

    CAS  Google Scholar 

  • Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23(16):3487–3493

    CAS  PubMed  Google Scholar 

  • Klinkert P, Post PN, Breslau PJ, van Bockel JH (2004) Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg 27(4):357–362

    CAS  PubMed  Google Scholar 

  • Koch S, Flanagan TC, Sachweh JS, Tanios F, Schnoering H, Deichmann T, Ella V, Kellomaki M, Gronloh N, Gries T, Tolba R, Schmitz-Rode T, Jockenhoevel S (2010) Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31(17):4731–4739

    CAS  PubMed  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    CAS  Google Scholar 

  • Liberski A, Ayad N, Wojciechowska D, Zielinska D, Struszczyk MH, Latif N, Yacoub M (2016) Knitting for heart valve tissue engineering. Glob Cardiol Sci Pract 2016(3):e201631

    PubMed  PubMed Central  Google Scholar 

  • Liberski A, Ayad N, Wojciechowska D, Kot R, Vo DMP, Aibibu D, Hoffmann G, Cherif C, Grobelny-Mayer K, Snycerski M, Goldmann H (2017) Weaving for heart valve tissue engineering. Biotechnol Adv 35(6):633–656

    CAS  PubMed  Google Scholar 

  • Liu X, Sun A, Fan Y, Deng X (2015) Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann Biomed Eng 43(1):3–15

    CAS  PubMed  Google Scholar 

  • Lukáš D, Sarkar A, Martinová L, Vodsed'álková K, Lubasová D, Chaloupek J, Pokorný P, MikeÅ¡ P, Chvojka J, Komárek M (2009) Physical principles of electrospinning (electrospinning as a nano-scale technology of the twenty-first century). Text Prog 41(2):59–140

    Google Scholar 

  • Magnan L, Labrunie G, Fenelon M, Dusserre N, Foulc MP, Lafourcade M, Svahn I, Gontier E, Velez VJ, McAllister TN, L'Heureux N (2020) Human textiles: a cell-synthesized yarn as a truly "bio" material for tissue engineering applications. Acta Biomater 105:111–120

    Google Scholar 

  • Masden DL, Seruya M, Higgins JP (2012) A systematic review of the outcomes of distal upper extremity bypass surgery with arterial and venous conduits. J Hand Surg [Am] 37(11):2362–2367

    Google Scholar 

  • Mattson JM, Zhang Y (2017) Structural and functional differences between porcine aorta and vena cava. J Biomech Eng 139(7):0710071–0710078

    PubMed Central  Google Scholar 

  • McClure MJ, Sell SA, Simpson DG, Walpoth BH, Bowlin GL (2010) A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater 6(7):2422–2433

    CAS  PubMed  Google Scholar 

  • McClure MJ, Simpson DG, Bowlin GL (2012) Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: optimization of graft properties. J Mech Behav Biomed Mater 10:48–61

    CAS  PubMed  Google Scholar 

  • McColl E, Groll J, Jungst T, Dalton PD (2018) Design and fabrication of melt electrowritten tubes using intuitive software. Mater Des 155:46–58

    CAS  Google Scholar 

  • McCullen SD, Haslauer CM, Loboa EG (2010) Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. J Mater Chem 20(40):8776–8788

    CAS  Google Scholar 

  • Mertens ME, Koch S, Schuster P, Wehner J, Wu Z, Gremse F, Schulz V, Rongen L, Wolf F, Frese J, Gesche VN, van Zandvoort M, Mela P, Jockenhoevel S, Kiessling F, Lammers T (2015) USPIO-labeled textile materials for non-invasive MR imaging of tissue-engineered vascular grafts. Biomaterials 39:155–163

    CAS  PubMed  Google Scholar 

  • Muerza-Cascante ML, Haylock D, Hutmacher DW, Dalton PD (2015) Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B Rev 21(2):187–202

    CAS  PubMed  Google Scholar 

  • Nagiah N, Johnson R, Anderson R, Elliott W, Tan W (2015) Highly compliant vascular grafts with gelatin-sheathed coaxially structured nanofibers. Langmuir 31(47):12993–13002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naito Y, Imai Y, Shin'oka T, Kashiwagi J, Aoki M, Watanabe M, Matsumura G, Kosaka Y, Konuma T, Hibino N, Murata A, Miyake T, Kurosawa H (2003) Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg 125(2):419–420

    PubMed  Google Scholar 

  • Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga YT, Shimoyama Y, Takeuchi S (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12(6):584–590

    CAS  PubMed  Google Scholar 

  • Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft-past, present, and future. Tissue Eng B Rev 22(1):68–100

    CAS  Google Scholar 

  • Paxton NC, Lanaro M, Bo A, Crooks N, Ross MT, Green N, Tetsworth K, Allenby MC, Gu Y, Wong CS, Powell SK, Woodruff MA (2020) Design tools for patient specific and highly controlled melt electrowritten scaffolds. J Mech Behav Biomed Mater 105:103695

    CAS  PubMed  Google Scholar 

  • Pennings I, van Haaften EE, Jungst T, Bulsink JA, Rosenberg A, Groll J, Bouten CVC, Kurniawan NA, Smits A, Gawlitta D (2019) Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication 12(1):015009

    PubMed  Google Scholar 

  • Quan Q, Meng H, Chang B, Hong L, Li R, Liu G, Cheng X, Tang H, Liu P, Sun Y, Peng J, Zhao Q, Wang Y, Lu S (2019) Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials 207:49–60

    CAS  PubMed  Google Scholar 

  • Quarmby JW, Burnand KG, Lockhart SJM, Donald AE, Sommerville KM, Jamieson CW, Browse NL (1998) Prospective randomized trial of woven versus collagen-impregnated knitted prosthetic Dacron grafts in aortoiliac surgery. BJS (Br J Surg) 85(6):775–777

    CAS  Google Scholar 

  • Radakovic D, Reboredo J, Helm M, Weigel T, Schürlein S, Kupczyk E, Leyh RG, Walles H, Hansmann J (2017) A multilayered electrospun graft as vascular access for hemodialysis. PLoS One 12(10):e0185916–e0185916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radke D, Jia W, Sharma D, Fena K, Wang G, Goldman J, Zhao F (2018) Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development. Adv Healthc Mater 7(15):e1701461–e1701461

    PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I (2013) The vascular endothelium and human diseases. Int J Biol Sci 9(10):1057–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 35(8):681–690

    CAS  PubMed  Google Scholar 

  • Robinson TM, Hutmacher DW, Dalton PD (2019) The next frontier in melt electrospinning: taming the jet. Adv Funct Mater 29(44):1904664

    CAS  Google Scholar 

  • Roh JD, Nelson GN, Brennan MP, Mirensky TL, Yi T, Hazlett TF, Tellides G, Sinusas AJ, Pober JS, Saltzman WM, Kyriakides TR, Breuer CK (2008) Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29(10):1454–1463

    CAS  PubMed  Google Scholar 

  • Ruiz-Soler A, Kabinejadian F, Slevin MA, Bartolo PJ, Keshmiri A (2017) Optimisation of a novel spiral-inducing bypass graft using computational fluid dynamics. Sci Rep 7(1):1865

    PubMed  PubMed Central  Google Scholar 

  • Saidy NT, Wolf F, Bas O, Keijdener H, Hutmacher DW, Mela P, De-Juan-Pardo EM (2019) Biologically inspired scaffolds for heart valve tissue engineering via melt electrowriting. Small 15(24):e1900873

    PubMed  Google Scholar 

  • Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD (2010) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312

    PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM (2006) The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg 31(6):627–636

    CAS  PubMed  Google Scholar 

  • Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM (2007) Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 45(4):327–336

    PubMed  Google Scholar 

  • Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202(Pt 23):3305–3313

    CAS  PubMed  Google Scholar 

  • Shi J, Chen S, Wang L, Zhang X, Gao J, Jiang L, Tang D, Zhang L, Midgley A, Kong D, Wang S (2019) Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparin-loaded polycaprolactone/gelatin hybrid vascular grafts. J Biomed Mater Res B Appl Biomater 107(6):2040–2049

    CAS  PubMed  Google Scholar 

  • Shinoka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533

    CAS  Google Scholar 

  • Shinoka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, Sakamoto T, Nagatsu M, Kurosawa H (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338

    Google Scholar 

  • Singh C, Wong CS, Wang X (2015) Medical textiles as vascular implants and their success to mimic natural arteries. J Funct Biomater 6(3):500–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skovrind I, Harvald EB, Juul Belling H, Jorgensen CD, Lindholt JS, Andersen DC (2019) Concise review: patency of small-diameter tissue-engineered vascular grafts: a meta-analysis of preclinical trials. Stem Cells Transl Med 8(7):671–680

    PubMed  PubMed Central  Google Scholar 

  • Smits AI, Bonito V, Stoddart M (2016) In situ tissue engineering: seducing the body to regenerate. Tissue Eng Part A 22(17–18):1061–1062

    PubMed  Google Scholar 

  • Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A (2011) Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A 96(3):566–574

    PubMed  Google Scholar 

  • Spadaccio C, Nappi F, Al-Attar N, Sutherland FW, Acar C, Nenna A, Trombetta M, Chello M, Rainer A (2016) Old myths, new concerns: the long-term effects of ascending aorta replacement with dacron grafts. Not all that glitters is gold. J Cardiovasc Transl Res 9(4):334–342

    PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Tara S, Nakayama H, Kurobe H, Yi T, Lee YU, Lee AY, Breuer CK, Shinoka T (2016) Novel bioresorbable vascular graft with sponge-type scaffold as a small-diameter arterial graft. Ann Thorac Surg 102(3):720–727

    PubMed  PubMed Central  Google Scholar 

  • Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T (2018) Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg 30(2):175–179

    PubMed  PubMed Central  Google Scholar 

  • Torikai K, Ichikawa H, Hirakawa K, Matsumiya G, Kuratani T, Iwai S, Saito A, Kawaguchi N, Matsuura N, Sawa Y (2008) A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J Thorac Cardiovasc Surg 136(1):37–45.e31

    PubMed  Google Scholar 

  • Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M (2016) Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J 37(42):3232–3245

    PubMed  Google Scholar 

  • Tschoeke B, Flanagan TC, Cornelissen A, Koch S, Roehl A, Sriharwoko M, Sachweh JS, Gries T, Schmitz-Rode T, Jockenhoevel S (2008) Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs 32(10):800–809

    PubMed  Google Scholar 

  • Tschoeke B, Flanagan TC, Koch S, Harwoko MS, Deichmann M, EllÃ¥ V, Sachweh JS, KellomÃ¥ki M, Gries T, Schmitz-Rode T, Jockenhoevel S (2009) Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tissue Eng A 15(8):1909–1918

    CAS  Google Scholar 

  • Valdes PJ, Diaz MA (2020) Vein Graft Stenosis. StatPearls. StatPearls Publishing LLC, Treasure Island

    Google Scholar 

  • Van Canneyt K, Morbiducci U, Eloot S, De Santis G, Segers P, Verdonck P (2013) A computational exploration of helical arterio-venous graft designs. J Biomech 46(2):345–353

    PubMed  Google Scholar 

  • van Hinsbergh VWM (2012) Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol 34(1):93–106

    PubMed  Google Scholar 

  • van Lith R, Ameer GA (2011) Biohybrid strategies for vascular grafts. In: Pallua N, Suscheck CV (eds) Tissue engineering: from lab to clinic. Springer Berlin Heidelberg, Berlin\Heidelberg, pp 279–316

    Google Scholar 

  • Wang D, Liu H, Fan Y (2017) Silk fibroin for vascular regeneration. Microsc Res Tech 80(3):280–290

    CAS  PubMed  Google Scholar 

  • Waterhouse A, Wise SG, Ng MK, Weiss AS (2011) Elastin as a nonthrombogenic biomaterial. Tissue Eng Part B Rev 17(2):93–99

    CAS  PubMed  Google Scholar 

  • Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Weiss AS, Ng MK (2011) A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater 7(1):295–303

    CAS  PubMed  Google Scholar 

  • Wissing TB, Bonito V, Bouten CVC, Smits AIPM (2017) Biomaterial-driven in situ cardiovascular tissue engineering – a multi-disciplinary perspective. npj Regen Med 2(1):18

    PubMed  PubMed Central  Google Scholar 

  • Wissing TB, Bonito V, van Haaften EE, van Doeselaar M, Brugmans MMCP, Janssen HM, Bouten CVC, Smits AIPM (2019) Macrophage-driven biomaterial degradation depends on scaffold microarchitecture. Front Bioeng Biotechnol 7:87–87

    PubMed  PubMed Central  Google Scholar 

  • Wolf F, Paefgen V, Winz O, Mertens M, Koch S, Gross-Weege N, Morgenroth A, Rix A, Schnoering H, Chalabi K, Jockenhoevel S, Lammers T, Mottaghy F, Kiessling F, Mela P (2019) MR and PET-CT monitoring of tissue-engineered vascular grafts in the ovine carotid artery. Biomaterials 216:119228

    CAS  PubMed  Google Scholar 

  • Woodhouse KA, Klement P, Chen V, Gorbet MB, Keeley FW, Stahl R, Fromstein JD, Bellingham CM (2004) Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 25(19):4543–4553

    CAS  PubMed  Google Scholar 

  • Wu W, Allen RA, Wang Y (2012) Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med 18(7):1148–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X (2018) Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C 82:121–129

    CAS  Google Scholar 

  • Yagi T, Sato M, Nakazawa Y, Tanaka K, Sata M, Itoh K, Takagi Y, Asakura T (2011) Preparation of double-raschel knitted silk vascular grafts and evaluation of short-term function in a rat abdominal aorta. J Artif Organs 14(2):89–99

    CAS  PubMed  Google Scholar 

  • Yang X, Wei J, Lei D, Liu Y, Wu W (2016) Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation. Biomaterials 88:34–47

    CAS  PubMed  Google Scholar 

  • Zhang L, Ao Q, Wang A, Lu G, Kong L, Gong Y, Zhao N, Zhang X (2006) A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res A 77A(2):277–284

    CAS  Google Scholar 

  • Zhang Y, Li XS, Guex AG, Liu SS, Muller E, Malini RI, Zhao HJ, Rottmar M, Maniura-Weber K, Rossi RM, Spano F (2017) A compliant and biomimetic three-layered vascular graft for small blood vessels. Biofabrication 9(2):025010

    CAS  PubMed  Google Scholar 

  • Zhang F, Xie Y, Celik H, Akkus O, Bernacki SH, King MW (2019) Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication 11(3):035020

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jockenhoevel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fernández-Colino, A., Jockenhoevel, S. (2020). Textile-Reinforced Scaffolds for Vascular Tissue Engineering. In: Walpoth, B.H., Bergmeister, H., Bowlin, G.L., Kong, D., Rotmans, J.I., Zilla, P. (eds) Tissue-Engineered Vascular Grafts. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-05336-9_9

Download citation

Publish with us

Policies and ethics