Skip to main content

Analysis of Protein Structures Using Residue Interaction Networks

  • Chapter
  • First Online:
Structural Bioinformatics: Applications in Preclinical Drug Discovery Process

Abstract

The network description is widely used to analyze the topology and the dynamics of complex systems. Residue interaction network (RIN) represents three-dimensional structure of protein as a set of nodes (residues) with their connections (edges). Calculated topological parameters from RIN correlate with various aspects of protein structure and function. Here, we reviewed the applications of RIN for the analysis and prediction of functionally important residues and ligand binding sites, protein–protein interactions , allosteric regulation , influence of point mutations on structure and dynamics of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAPRI:

Critical assessment of predicted interactions

DDN:

Differential network

GPCR:

G protein-coupled receptor

HPNCscore:

Hydrophobic and polar networks combined scoring function

MD:

Molecular dynamics simulation

NACEN:

Node-weighted amino acid contact energy network

PPI:

Protein–protein interaction

RIN:

Residue interaction network

SVM:

Support vector machine

References

  1. Otte E, Rousseau R (2002) Social network analysis: a powerful strategy, also for the information sciences. J Inform Sci 28:441–453

    Article  Google Scholar 

  2. Meusel R, Vigna S, Lehmberg O, Bizer C (2015) The graph structure in the web – analyzed on different aggregation levels. J Web Sci 1:33–47

    Article  Google Scholar 

  3. Bottinelli A, Louf R, Gherardi M (2017) Balancing building and maintenance costs in growing transport networks. Phys Rev E 96:032316

    Article  PubMed  Google Scholar 

  4. Murakami Y, Tripathi LP, Prathipati P, Mizuguchi K (2017) Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery. Curr Opin Struct Biol 44:134–142

    Article  CAS  PubMed  Google Scholar 

  5. Zhao B, Wang J, Wu FX (2017) Computational methods to predict protein functions from protein-protein interaction networks. Curr Protein Pept Sci 18:1120–1131

    CAS  PubMed  Google Scholar 

  6. Miryala SK, Anbarasu A, Ramaiah S (2018) Discerning molecular interactions: a comprehensive review on biomolecular interaction databases and network analysis tools. Gene 642:84–94

    Article  CAS  PubMed  Google Scholar 

  7. Laddach A, Ng JC, Chung SS, Fraternali F (2018) Genetic variants and protein-protein interactions: a multidimensional network-centric view. Curr Opin Struct Biol 50:82–90

    Article  CAS  PubMed  Google Scholar 

  8. Yao V, Wong AK, Troyanskaya OG (2018) Enabling precision medicine through integrative network models. J Mol Biol 430(18 Pt A):2913–2923

    Article  CAS  PubMed  Google Scholar 

  9. Xie L, Li J, Xie L, Bourne PE (2009) Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 5:e1000387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li P, Fu Y, Wang Y (2015) Network based approach to drug discovery: a mini review. Mini-Rev Med Chem 15:687–695

    Article  CAS  PubMed  Google Scholar 

  11. Aftabuddin M, Kundu S (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys J 93:225–231

    Article  CAS  PubMed  Google Scholar 

  12. Bhattacharyya M, Vishveshwara S (2011) Probing the allosteric mechanism in pyrrolysyl-tRNA synthetase using energy-weighted network formalism. Biochemistry 50:6225–6236

    Article  CAS  PubMed  Google Scholar 

  13. Vijayabaskar MS, Vishveshwara S (2010) Interaction energy based protein structure networks. Biophys J J99:3704–3715

    Article  CAS  Google Scholar 

  14. Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S (2004) Network analysis of protein structures identifies functional residues. J Mol Biol 344:1135–1146

    Article  CAS  PubMed  Google Scholar 

  15. Brinda KV, Vishveshwara S (2005) A network representation of protein structures: implications for protein stability. Biophys J J89:4159–4170

    Article  CAS  Google Scholar 

  16. Brinda KV, Vishveshwara S (2005) Oligomeric protein structure networks: insights into protein-protein interactions. BMC Bioinform 6:296

    Article  CAS  Google Scholar 

  17. Atilgan AR, Akan P, Baysal C (2004) Small-world communication of residues and significance for protein dynamics. Biophys J J86:85–91

    Article  Google Scholar 

  18. Bagler G, Sinha S (2007) Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics 23:1760–1767

    Article  CAS  PubMed  Google Scholar 

  19. Zhou J, Yan W, Hu G, Shen B (2014) Amino acid network for the discrimination of native protein structures from decoys. Curr Protein Pept Sci 15:522–528

    Article  CAS  PubMed  Google Scholar 

  20. Hu G, Zhou J, Yan W, Chen J, Shen B (2013) The topology and dynamics of protein complexes: insights from intra–molecular network theory. Curr Protein Pept Sci 14:121–132

    Article  CAS  PubMed  Google Scholar 

  21. Martin AJ, Vidotto M, Boscariol F, Di Domenico T, Walsh I, Tosatto SC (2011) RING: networking interacting residues, evolutionary information and energetics in protein structures. Bioinformatics 27:2003–2005

    Article  CAS  PubMed  Google Scholar 

  22. Rao F, Caflisch A (2004) The protein folding network. J Mol Biol 342:299–306

    Article  CAS  PubMed  Google Scholar 

  23. Grewal RK, Roy S (2015) Modeling proteins as residue interaction networks. Protein Pept Lett 22:923–933

    Article  CAS  PubMed  Google Scholar 

  24. Zhou J, Yan W, Hu G, Shen B (2016) Amino acid network for prediction of catalytic residues in enzymes: a comparison survey. Curr Protein Pept Sci 17:41–51

    Article  CAS  PubMed  Google Scholar 

  25. Pons C, Glaser F, Fernandez-Recio J (2011) Prediction of protein-binding areas by small-world residue networks and application to docking. BMC Bioinform 12:378

    Article  CAS  Google Scholar 

  26. Schueler-Furman O, Wodak SJ (2016) Computational approaches to investigating allostery. Curr Opin Struct Biol 41:159–171

    Article  CAS  PubMed  Google Scholar 

  27. Cheng TMK, Lu Y-E, Vendruscolo M, Lio P, Blundell TL (2008) Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms. PLoS Comput Biol 4:e1000135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Di Paola L, De Ruvo M, Paci P, Santoni D, Giuliani A (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113:1598–1613

    Article  PubMed  CAS  Google Scholar 

  29. Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan W, Zhou J, Sun M, Chen J, Hu G, Shen B (2014) The construction of an amino acid network for understanding protein structure and function. Amino Acids 46:1419–1439

    Article  CAS  PubMed  Google Scholar 

  31. Bhattacharyya M, Ghosh S, Vishveshwara S (2016) Protein structure and function: looking through the network of side-chain interactions. Curr Protein Pept Sci 17:4–25

    Article  CAS  PubMed  Google Scholar 

  32. Grewal RK, Mitra D, Roy S (2015) Mapping networks of light-dark transition in LOV photoreceptors. Bioinformatics 31:3608–3616

    CAS  Google Scholar 

  33. Doncheva NT, Assenov Y, Domingues FS, Albrecht M (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7:670–685

    Article  CAS  PubMed  Google Scholar 

  34. del Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Syst Biol 2:0019

    PubMed  Google Scholar 

  35. Ghosh A, Sakaguchi R, Liu C, Vishveshwara S, Hou YM (2011) Allosteric communication in cysteinyl tRNA synthetase: a network of direct and indirect readout. J Biol Chem 286:37721–37731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Estrada E (2010) Universality in protein residue networks. Biophys J 98:890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghosh A, Vishveshwara S (2008) Variations in clique and community patterns in protein structures during allosteric communication: investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes. Biochemistry 47:11398–11407

    Article  CAS  PubMed  Google Scholar 

  38. Pasi M, Tiberti M, Arrigoni A, Papaleo E (2012) xPyder: a PyMOL plugin to analyze coupled residues and their networks in protein structures. J Chem Inf Model 52:1865–1874

    Article  CAS  PubMed  Google Scholar 

  39. Eargle J, Luthey-Schulten Z (2012) NetworkView: 3D display and analysis of protein· RNA interaction networks. Bioinformatics 28:3000–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Piovesan D, Minervini G, Tosatto SC (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44(W1):W367–W374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doncheva NT, Klein K, Domingues FS, Albrecht M (2011) Analyzing and visualizing residue networks of protein structures. Trends Biochem Sci 36:179–182

    Article  CAS  PubMed  Google Scholar 

  42. Morris JH, Huang CC, Babbitt PC, Ferrin TE (2007) structureViz: linking Cytoscape and UCSF Chimera. Bioinformatics 23:2345–2347

    Article  CAS  PubMed  Google Scholar 

  43. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  45. Yan Y, Zhang SG, Wu FX (2011) Applications of graph theory in protein structure identification. Proteome Sci 9(Suppl 1):S17

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thibert B, Bredesen DE, del Rio G (2005) Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinform 6:213

    Article  CAS  Google Scholar 

  47. Emerson IA, Gothandam KM (2012) Residue centrality in alpha helical polytopic transmembrane protein structures. J Theor Biol 309:78–87

    Article  CAS  Google Scholar 

  48. Tse A, Verkhivker GM (2015) Molecular dynamics simulations and structural network analysis of c-Abl and c-Src kinase core proteins: capturing allosteric mechanisms and communication pathways from residue centrality. J Chem Inf Model 55:1645–1662

    Article  CAS  PubMed  Google Scholar 

  49. Chea E, Livesay DR (2007) How accurate and statistically robust are catalytic site predictions based on closeness centrality? BMC Bioinform 8:153

    Article  CAS  Google Scholar 

  50. Tang YR, Sheng ZY, Chen YZ, Zhang Z (2008) An improved prediction of catalytic residues in enzyme structures. Protein Eng Des Sel 21:295–302

    Article  CAS  PubMed  Google Scholar 

  51. Sheftel S, Muratore K, Black M, Costanzi S (2013) Graph analysis of β2 adrenergic receptor structures: a “social network” of GPCR residues. Silico Pharmacol 1:16

    Article  Google Scholar 

  52. Slama P, Filippis I, Lappe M (2008) Detection of protein catalytic residues at high precision using local network properties. BMC Bioinform 9:517

    Article  CAS  Google Scholar 

  53. Veselovsky AV, Archakov AI (2007) Inhibitors of protein-protein interactions as potential drugs. Curr Comput-Aided Drug Des 3:51–58

    Article  CAS  Google Scholar 

  54. Marino Buslje C, Teppa E, Di Domenico T, Delfino JM, Nielsen M (2010) Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification. PLoS Comput Biol 6:e1000978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Aguilar D, Oliva B, Buslje CM (2012) Mapping the mutual information network of enzymatic families in the protein structure to unveil functional features. PLoS ONE 7:e41430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poirrette AR, Artymiuk PJ, Grindley HM, Rice DW, Willett P (1994) Structural similarity between binding sites in influenza sialidase and isocitrate dehydrogenase: implications for an alternative approach to rational drug design. Protein Sci 3:1128–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L (2008) Analysis of protein surface patterns by pocket similarity network. Prot Pept Lett 15:448–455

    Article  CAS  Google Scholar 

  58. Yan W, Hu G, Liang Z, Zhou J, Yang Y, Chen J, Shen B (2018) Node-weighted amino acid network strategy for characterization and identification of protein functional residues. J Chem Inf Model. (in press). https://doi.org/10.1021/acs.jcim.8b00146

    Article  CAS  PubMed  Google Scholar 

  59. Brinda KV, Kannan N, Vishveshwara S (2002) Analysis of homodimeric protein interfaces by graph-spectral methods. Protein Eng 15:265–277

    Article  CAS  PubMed  Google Scholar 

  60. Reichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G (2005) The modular architecture of protein–protein binding interfaces. PNAS 102:57–62

    Article  CAS  PubMed  Google Scholar 

  61. Brinda KV, Surolia A, Vishveshwara S (2005) Insights into the quaternary association of proteins through structure graphs: a case study of lectins. Biochem J J391:1–15

    Article  CAS  Google Scholar 

  62. Kannan N, Chander P, Ghosh P, Vishveshwara S, Chatterji D (2001) Stabilizing interactions in the dimer interface of alpha-subunit in Escherichia coli RNA polymerase: a graph spectral and point mutation study. Protein Sci 10:46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Soni N, Madhusudhan MS (2017) Computational modeling of protein assemblies. Curr Opin Struct Biol 44:179–189

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Q, Feng T, Xu L, Sun H, Pan P, Li Y, Li D, Hou T (2016) Recent advances in protein-protein docking. Curr Drug Targets 17:1586–1594

    Article  CAS  PubMed  Google Scholar 

  65. Chang S, Jiao X, Li CH, Gong XQ, Chen WZ, Wang CX (2008) Amino acid network and its scoring application in protein–protein docking. Biophys Chem 134:111–118

    Article  CAS  PubMed  Google Scholar 

  66. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 33(1):281–299

    Article  CAS  Google Scholar 

  67. Shih ESC, Hwang M-J (2015) NPPD: a protein-protein docking scoring function based on dyadic differences in networks of hydrophobic and hydrophilic amino acid residues. Biology 4:282–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gong X, Wang P, Yang F, Chang S, Liu B, He H, Cao L, Xu X, Li C, Chen W, Wang C (2010) Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring. Proteins 78:3150–3155

    Article  CAS  PubMed  Google Scholar 

  69. Jiao X, Chang S (2011) Scoring function based on weighted residue network. Int J Mol Sci 12:8773–8786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo Q, Hamer R, Reinert G, Deane CM (2013) Local network patterns in protein-protein interfaces. PLoS ONE 8:e57031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Greener JG, Sternberg MJ (2018) Structure-based prediction of protein allostery. Curr Opin Struct Biol 50:1–8

    Article  CAS  PubMed  Google Scholar 

  72. Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153:293–305

    Article  CAS  PubMed  Google Scholar 

  73. Lu S, Li S, Zhang J (2014) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34:1242–1285

    Article  CAS  PubMed  Google Scholar 

  74. Ghosh A, Vishveshwara S (2007) A study of communication pathways in methionyl-tRNA synthetase by molecular dynamics simulations and structure network analysis. PNAS 104:15711–15716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. del Sol A, Arauzo-Bravo MJ, Amoros D, Nussinov R (2007) Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages. Genome Biol 8:R92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Angelova K, Felline A, Lee M, Patel M, Puett D, Fanelli F (2011) Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor. Cell Mol Life Sci 68:1227–1239

    Article  CAS  PubMed  Google Scholar 

  77. Süel GM, Lockless SW, Wall MA, Ranganathan R (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 10:59–69

    Article  PubMed  CAS  Google Scholar 

  78. Tang S, Liao JC, Dunn AR, Altman RB, Spudich JA, Schmidt JP (2007) Predicting allosteric communication in myosin via a pathway of conserved residues. J Mol Biol 373:1361–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. del Sol A, Tsai CJ, Ma B, Nussinov R (2009) The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17:1042–1050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. PNAS 106:6620–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dixit A, Verkhivker GM (2011) Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 7:e1002179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kong Y, Karplus M (2009) Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis. Proteins 74:145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vishveshwara S, Ghosh A, Hansia P (2009) Intra and inter-molecular communications through protein structure network. Curr Protein Pept Sci 10:146–160

    Article  CAS  PubMed  Google Scholar 

  84. Sathyapriya R, Vishveshwara S (2007) Structure networks of E-coli glutaminyl-tRNA synthetase: effects of ligand binding. Proteins 68:541–550

    Article  CAS  PubMed  Google Scholar 

  85. Bhattacharyya M, Ghosh A, Hansia P, Vishveshwara S (2010) Allostery and conformational free energy changes in human tryptophanyl-tRNA synthetase from essential dynamics and structure networks. Proteins 78:506–517

    Article  CAS  PubMed  Google Scholar 

  86. Hansia P, Ghosh A, Vishveshwara S (2009) Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks. Mol Bio Syst 5:1860–1872

    CAS  Google Scholar 

  87. Fanelli F, Felline A (2011) Dimerization and ligand binding affect the structure network of A2A adenosine receptor. Biochim Biophys Acta 1808:1256–1266

    Article  CAS  PubMed  Google Scholar 

  88. Lee Y, Choi S, Hyeon C (2014) Mapping the intramolecular signal transduction of G-protein coupled receptors. Proteins 82:727–743

    Article  CAS  PubMed  Google Scholar 

  89. Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA (2013) Activation and dynamic network of the M2 muscarinic receptor. PNAS 110:10982–10987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu Z, Bowen D, Southerland WM, del Sol A, Pan Y, Nussinov R, Ma B (2007) Ligand binding and circular permutation modify residue interaction network in DHFR. PLoS Comput Biol 3:1097–1107

    Article  CAS  Google Scholar 

  91. Li Y, Wen Z, Xiao J, Yin H, Yu L, Yang L, Li M (2011) Predicting disease-associated substitution of a single amino acid by analyzing residue interactions. BMC Bioinform 12:14

    Article  Google Scholar 

  92. Tse A, Verkhivker GM (2015) Small-world networks of residue interactions in the Abl kinase complexes with cancer drugs: topology of allosteric communication pathways can determine drug resistance effects. Mol Biosyst 11:2082–2095

    Article  CAS  PubMed  Google Scholar 

  93. Shcherbinin DS, RubtsovaMYu Grigorenko VG, Uporov IV, Veselovsky AV, Egorov AM (2017) The study of the role of mutations M182T and Q39K in the TEM-72 β-lactamase structure by the molecular dynamics method. Biochem (Moscow), Suppl B: Biomed Chem 11:120–127

    Article  Google Scholar 

  94. Grigorenko VG, RubtsovaMYu Uporov IV, Ishtubaev IV, Andreeva IP, Shcherbinin DS, Veselovsky AV, Egorov AM (2018) Bacterial TEM-type serine beta-lactamases: structure and analysis of mutations. biochemistry (Moscow). Suppl B: Biomed Chem 12:87–95

    Google Scholar 

  95. Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5:941–955

    Article  CAS  PubMed  Google Scholar 

  96. Scheiber J, Chen B, Milik M, Sukuru SC, Bender A, Mikhailov D, Whitebread S, Hamon J, Azzaoui K, Urban L, Glick M, Davies JW, Jenkins JL (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J Chem Inf Model 49:308–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Veselovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shcherbinin, D., Veselovsky, A. (2019). Analysis of Protein Structures Using Residue Interaction Networks. In: Mohan, C. (eds) Structural Bioinformatics: Applications in Preclinical Drug Discovery Process. Challenges and Advances in Computational Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-05282-9_3

Download citation

Publish with us

Policies and ethics