Skip to main content

Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members

  • Chapter
  • First Online:

Abstract

Climate change is known to affect the stability of agricultural production all over the world. One of the most important problems associated with agriculture is uptake of water and nutrients by plants. Plant roots are vital organs, which are involved in water and nutrient acquisition and gravitropic responses. This review describes the pivotal role of auxin in root growth, gravitropic and abiotic stress responses, focusing on the regulatory role of CDPK superfamily members in stress tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Petricka, J.J., et al.: Control of Arabidopsis root development. Ann. Rev. Plant Biol. 63, 563–590 (2012)

    Article  Google Scholar 

  2. Saini, S., et al.: Auxin: a master regulator in plant root development. Plant Cell Rep. 32, 741–757 (2013)

    Article  Google Scholar 

  3. Ljung, K.: Auxin metabolism and homeostasis during plant development. Development 140, 943–950 (2013)

    Article  Google Scholar 

  4. Sauer, M., Robert, S.: Auxin: simply complicated. J. Exp. Bot. 64, 2565–2577 (2013)

    Article  Google Scholar 

  5. De Smet, S., et al.: Gene networks involved in hormonal control of root development in Arabidopsis thaliana: a framework for studying its disturbance by metal stress. Int. J. Mol. Sci. 16, 19195–19224 (2015)

    Article  Google Scholar 

  6. Sun, F., et al.: Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol. 146, 178–188 (2008)

    Article  Google Scholar 

  7. Wang, Y., et al.: Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 166, 1637–1645 (2009)

    Article  Google Scholar 

  8. Reddy, A.S.N., et al.: Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23(6), 2010–2032 (2011)

    Article  Google Scholar 

  9. Uga, Y., et al.: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45(9), 1097–1102 (2013)

    Article  Google Scholar 

  10. Miller, G., et al.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33(4), 453–467 (2010)

    Article  Google Scholar 

  11. Iglesias, M.J., et al.: Auxin signaling participates in the adaptive response against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol. Biol. 74, 215–222 (2010)

    Article  Google Scholar 

  12. Hashiguchi, Y., et al.: Mechanism of higher plant gravity sensing. Am. J. Bot. 100, 91–100 (2013)

    Article  Google Scholar 

  13. Sato, E.M., et al.: New insights into root gravitropic signalling. J. Exp. Bot. 66(8), 2155–2165 (2015)

    Article  Google Scholar 

  14. Blancaflor, E.B.: Regulation of plant gravity sensing and signaling by the actin cytoskeleton. Am. J. Bot. 100, 143–152 (2013)

    Article  Google Scholar 

  15. Baldwin, K.L., et al.: Gravity sensing and signal transduction in vascular plant primary roots. Am. J. Bot. 100, 126–142 (2013)

    Article  Google Scholar 

  16. Swarup, R., Péret, B.: AUX/LAX family of auxin influx carriers—an overview. Front. Plant Sci. 3(Article 225) (2012)

    Google Scholar 

  17. Chen, M.K., et al.: ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol. 162, 1978–1991 (2013)

    Article  Google Scholar 

  18. Lusching, C., Vert, G.: The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141, 2924–2938 (2014)

    Article  Google Scholar 

  19. Armengot, L., et al.: Regulation of polar auxin transport by protein and lipid kinases. J. Exp. Bot. 67(14), 4015–4037 (2016). https://doi.org/10.1093/jxb/erw216

    Article  Google Scholar 

  20. Rigó, G., et al.: Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25, 1592–1608 (2013)

    Article  Google Scholar 

  21. Nemoto, K., et al.: Members of the plant CRK superfamily are capable of trans,- and autophophorylation of tyrosin residues. J. Biol. Chem. 290(27), 16665–16677 (2015)

    Article  Google Scholar 

  22. Wang, J.P., et al.: Calcium dependent protein kinase (CDPK) and CDPK related kinase (CRK) gene families in tomato: genome wide identification and functional analyses in disease resistance. Mol. Genet. Genomics 291(2), 661–676 (2016)

    Article  Google Scholar 

  23. Simeunovic, A., et al.: Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 67(13), 3855–3872 (2016). https://doi.org/10.1093/jxb/erw157

    Article  Google Scholar 

  24. Harper, J.F., et al.: Decoding Ca(2+) signals through plant protein kinases. Ann. Rev. Plant Biol. 55, 263–288 (2004)

    Article  Google Scholar 

  25. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000)

    Google Scholar 

  26. Hrabak, E.M., et al.: The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666–680 (2003)

    Article  Google Scholar 

  27. Boudsocq, M., Sheen, J.: CDPKs in immune and stress signaling. Trends Plant Sci. 18, 30–40 (2013)

    Article  Google Scholar 

  28. Hamel, L.P., et al.: Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci. 19, 79–89 (2014)

    Article  Google Scholar 

  29. Umezawa, T., et al.: SnRK2C, a SNF1-related protein kinase 2, improve drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101, 17306–17311 (2004)

    Article  Google Scholar 

  30. Podell, S., Gribskov, M.: Predicting N-terminal myristoylation sites in plant proteins. BMC Genom. 5, 37–52 (2004)

    Article  Google Scholar 

  31. Rigó, G., et al.: Suspension protoplasts as useful experimental tool to study localization of GFP-tagged proteins in Arabidopsis thaliana. Acta Biol. Szeged. 52, 59–61 (2008)

    Google Scholar 

  32. Wang, Y., et al.: Characterization of a calmodulin-regulated Ca2+-dependent-protein-kinase-related protein kinase, AtCRK1, from Arabidopsis. Biochem. J. 383, 73–81 (2004)

    Article  Google Scholar 

  33. Liu, H.T., et al.: The calmodulin-binding protein kinase 3 is a part of heat-shock signal transduction in Arabidopsis thaliana. Plant J. 55, 760–773 (2008)

    Article  Google Scholar 

  34. Tao, X.C., Lu, Y.T.: Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt. J. Plant Biol. 56, 306–314 (2013)

    Article  Google Scholar 

  35. Li, R.J., et al.: Arabidopsis cytosolic glutamine synthetase AtGLN1; 1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem. Biophys. Res. Commun. 342, 119–126 (2006)

    Article  Google Scholar 

  36. Baba, A.I., et al.: Functional analysis of the Arabidopsis thaliana CDPK-related kinase family: AtCRK1 regulates responses to continuous light. Int. J. Mol. Sci. 19, 1282–1303 (2018). https://doi.org/10.3390/ijms19051282

    Article  Google Scholar 

  37. Leclercq, J., et al.: Molecular and biochemical characterization of LeCRK1, a ripening associated tomato CDPK-related kinase. J. Exp. Bot. 56, 25–35 (2005)

    Google Scholar 

  38. Salopek-Sondi, B., et al.: Improvement of root architecture under abiotic stress through control of auxin homeostasis in Arabidopsis and Brassica crops. J. Endocytobiosis Cell Res. 26, 100–111 (2015)

    Google Scholar 

  39. Miwa, K., et al.: Plants tolerant of high boron levels. Science 318, 1417 (2007)

    Article  Google Scholar 

  40. Takanoa, J., et al.: Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc. Natl. Acad. Sci. U.S.A. 107, 5220–5225 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research, Development and Innovation Fund of the Hungarian Government via Hungarian-German TÉT_12_DE-1-2013-0015 (A.I.B., Á.Cs., G.R., N.A., L.Sz., O.T., K.P), by the Tempus Public Foundation, Hungary and the Biological Doctoral School, University of Szeged, Hungary (A. I. B.), by Hungarian Ministry for National Economy GINOP-2.3.2-15-2016-00001 (A.I.B., Á.Cs., G.R., N.A., L.Sz.) and PD OTKA Grant No. 115502 and No. PD128055 (G.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Cséplő .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baba, A.I. et al. (2019). Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. In: Palocz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L., Taligás, T. (eds) International Climate Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-03816-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03816-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03815-1

  • Online ISBN: 978-3-030-03816-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics