Skip to main content

A Random Walk Model for Entity Relatedness

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11313))

Abstract

Semantic relatedness is a critical measure for a wide variety of applications nowadays. Numerous models, including path-based, have been proposed for this task with great success in many applications during the last few years. Among these applications, many of them require computing semantic relatedness between hundreds of pairs of items as part of their regular input. This scenario demands a computationally efficient model to process hundreds of queries in short time spans. Unfortunately, Path-based models are computationally challenging, creating large bottlenecks when facing these circumstances. Current approaches for reducing this computation have focused on limiting the number of paths to consider between entities.

Contrariwise, we claim that a semantic relatedness model based on random walks is a better alternative for handling the computational cost. To this end, we developed a model based on the well-studied Katz score. Our model addresses the scalability issues of Path-based models by pre-computing relatedness for all pair of vertices in the knowledge graph beforehand and later providing them when needed in querying time. Our current findings demonstrate that our model has a competitive performance in comparison to Path-based models while being computationally efficient for high-demanding applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.numpy.org.

  2. 2.

    https://wordnet.princeton.edu.

  3. 3.

    https://babelnet.org.

  4. 4.

    https://wiki.dbpedia.org.

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and tensor factorizations. In: IEEE International Conference on Data Mining Workshops, ICDMW 2009, pp. 262–269. IEEE (2009)

    Google Scholar 

  2. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similarity and relatedness using distributional and wordnet-based approaches. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 19–27. Association for Computational Linguistics (2009)

    Google Scholar 

  3. Agirre, E., Soroa, A.: Personalizing PageRank for word sense disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, pp. 33–41. Association for Computational Linguistics (2009)

    Google Scholar 

  4. Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.P.: Context-aware semantic association ranking (2003)

    Google Scholar 

  5. Anyanwu, K., Sheth, A.: \(\rho \)-queries: enabling querying for semantic associations on the semantic web. In: Proceedings of the 12th international conference on World Wide Web, pp. 690–699. ACM (2003)

    Google Scholar 

  6. Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)

    Article  Google Scholar 

  7. Cheng, G., Shao, F., Qu, Y.: An empirical evaluation of techniques for ranking semantic associations. IEEE Trans. Knowl. Data Eng. 29(11), 2388–2401 (2017)

    Article  Google Scholar 

  8. Cheng, G., Zhang, Y., Qu, Y.: Explass: exploring associations between entities via top-K ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 422–437. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1_27

    Chapter  Google Scholar 

  9. Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: REX: explaining relationships between entity pairs. Proc. VLDB Endow. 5(3), 241–252 (2011)

    Article  Google Scholar 

  10. Filtz, E., Savenkov, V., Umbrich, J.: On finding the K shortest paths in RDF data. In: Proceedings of the 5th International Workshop on Intelligent Exploration of Semantic Data (IESD 2016) Co-located with the 15th International Semantic Web Conference (ISWC 2016), vol. 18 (2016)

    Google Scholar 

  11. Finkelstein, L., et al.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference on World Wide Web, pp. 406–414. ACM (2001)

    Google Scholar 

  12. Fionda, V., Pirrò, G.: Meta structures in knowledge graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 296–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_18

    Chapter  Google Scholar 

  13. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 375–383. ACM (2017)

    Google Scholar 

  14. Gentile, A.L., Zhang, Z., Xia, L., Iria, J.: Semantic relatedness approach for named entity disambiguation. In: Agosti, M., Esposito, F., Thanos, C. (eds.) IRCDL 2010. CCIS, vol. 91, pp. 137–148. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15850-6_14

    Chapter  Google Scholar 

  15. Heim, P., Lohmann, S., Stegemann, T.: Interactive relationship discovery via the semantic web. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 303–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9_21

    Chapter  Google Scholar 

  16. Hulpuş, I., Prangnawarat, N., Hayes, C.: Path-based semantic relatedness on linked data and its use to word and entity disambiguation. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 442–457. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_26

    Chapter  Google Scholar 

  17. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MathSciNet  Google Scholar 

  18. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an on-line lexical database. Int. J. Lexicogr. 3(4), 235–244 (1990)

    Article  Google Scholar 

  19. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  20. Pereira Nunes, B., Dietze, S., Casanova, M.A., Kawase, R., Fetahu, B., Nejdl, W.: Combining a co-occurrence-based and a semantic measure for entity linking. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_37

    Chapter  Google Scholar 

  21. Piao, G., Breslin, J.G.: Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 315–320. ACM (2016)

    Google Scholar 

  22. Pirrò, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_36

    Chapter  Google Scholar 

  23. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  24. Schwartz, H.A., Gomez, F.: Evaluating semantic metrics on tasks of concept similarity. In: Cross-Disciplinary Advances in Applied Natural Language Processing: Issues and Approaches, pp. 324–340. IGI Global (2012)

    Google Scholar 

Download references

Acknowledgements

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant No. SFI/12/RC/2289, co-funded by the European Regional Development Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Torres-Tramón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torres-Tramón, P., Hayes, C. (2018). A Random Walk Model for Entity Relatedness. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds) Knowledge Engineering and Knowledge Management. EKAW 2018. Lecture Notes in Computer Science(), vol 11313. Springer, Cham. https://doi.org/10.1007/978-3-030-03667-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03667-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03666-9

  • Online ISBN: 978-3-030-03667-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics