Skip to main content

Transformation from Graphs to Signals and Back

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Network science has been a rapidly evolving field to study systems made of interactions between entities. Studying the structure of such networks reveals indeed the underlying mechanisms of these systems, and has been proven successful in many domains, such as sociology, biology, or geography. Recently, connections between network science and signal processing have emerged, making the use of a wide variety of tools possible to study networks. In this chapter, a focus is made on a methodology introduced to transform a graph into a collection of signals, using a multidimensional scaling technique: by projecting a distance matrix representing relations between vertices of the graph as points in a Euclidean space, it is possible to interpret coordinates of vertices in this space as signals, and take advantage of this dual representation to develop new tools for the study of networks. Deeper considerations of this methodology are proposed, by strengthening the connections between the obtained signals and the common graph structures. A robust inverse transformation method is next described, taking into account possible changes in the signals. Establishing a robust duality between graphs and signals opens up new perspectives, as classical signal processing tools, such as spectral analysis or filtering, are made available for the study of the structure of networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Aguilar-San Juan, L. Guzmán-Vargas, Earthquake magnitude time series: scaling behavior of visibility networks. Eur. Phys. J. B 86(11), 454 (2013)

    Article  Google Scholar 

  2. D. Aldous, J. Fill, Reversible Markov Chains and Random Walks on Graphs (Berkeley, 2002)

    Google Scholar 

  3. A. Anis, A. Gadde, A. Ortega, Towards a sampling theorem for signals on arbitrary graphs, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 3864–3868

    Google Scholar 

  4. M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Google Scholar 

  5. I. Borg, P.J.F. Groenen, Modern Multidimensional Scaling, Springer Series in Statistics (Springer, New York, 2005)

    MATH  Google Scholar 

  6. A.S.L.O. Campanharo, M. Irmak Sirer, R. Dean Malmgren, F.M. Ramos, L.A.N. Amaral, Duality between time series and networks. PloS One 6(8), e23378 (2011)

    Google Scholar 

  7. S. Chen, R. Varma, A. Sandryhaila, J. Kovacevic, Discrete signal processing on graphs: sampling theory. CoRR (2015), arXiv:1503.05432

  8. J. Clifford Gower, Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl. 67, 81–97 (1985)

    Google Scholar 

  9. Y. Dekel, J.R. Lee, N. Linial, Eigenvectors of random graphs: nodal domains. Random Struct. Algorithms 39(1), 39–58 (2011)

    Article  MathSciNet  Google Scholar 

  10. X. Ding, T. Jiang et al., Spectral distributions of adjacency and Laplacian matrices of random graphs. Ann. Appl. Probab. 20(6), 2086–2117 (2010)

    Google Scholar 

  11. J.F. Donges, J. Heitzig, R.V. Donner, J. Kurths, Analytical framework for recurrence network analysis of time series. Phys. Rev. E 85(4) (2012)

    Google Scholar 

  12. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Recurrence networksa novel paradigm for nonlinear time series analysis. New J. Phys. 12(3), 033025 (2010)

    Article  Google Scholar 

  13. R.V. Donner, M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths, Recurrence-based time series analysis by means of complex network methods. Int. J. Bifurc. Chaos 21(04), 1019–1046 (2011)

    Article  MathSciNet  Google Scholar 

  14. R. Durrett, Random Graph Dynamics, vol. 200 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  15. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010). Bibtex: Fortunato 2010

    Google Scholar 

  16. S. Fortunato, D. Hric, Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  17. A. Gadde, A. Ortega, A probabilistic interpretation of sampling theory of graph signals (2015), arXiv:1503.06629

  18. B. Girault, P. Gonçalves, E. Fleury, A. Mor, Semi-supervised learning for graph to signal mapping: a graph signal wiener filter interpretation, in IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) (Florence, Italy, 2014), pp. 1115–1119

    Google Scholar 

  19. R.M. Gray, Toeplitz and circulant matrices: a review. Commun. Inf. Theory 2(3), 155–239 (2005)

    Google Scholar 

  20. A. Hagberg, P. Swart, D.S. Chult, Exploring network structure, dynamics, and function using networkx. Technical report (Los Alamos National Laboratory (LANL), Los Alamos, 2008)

    Google Scholar 

  21. D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Google Scholar 

  22. R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Networks as signals, with an application to a bike sharing system, in 2013 Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2013), pp. 611–614

    Google Scholar 

  23. R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Extraction of temporal network structures from graph-based signals. IEEE Trans. Signal Inf. Process. Netw. 2(2), 215–226 (2016)

    Article  MathSciNet  Google Scholar 

  24. R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, Relabelling vertices according to the network structure by minimizing the cyclic bandwidth sum. J. Complex Netw. 4(4), 534–560 (2016)

    MathSciNet  Google Scholar 

  25. Y. Haraguchi, Y. Shimada, T. Ikeguchi, K. Aihara, Transformation from complex networks to time series using classical multidimensional scaling, in 2009 Artificial Neural Networks–ICANN (Springer, Berlin, 2009), pp. 325–334

    Google Scholar 

  26. Z.-K. Huang, K.-W. Chau, A new image thresholding method based on Gaussian mixture model. Appl. Math. Comput. 205(2), 899–907 (2008)

    Google Scholar 

  27. J.D. Hunter, Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Google Scholar 

  28. H. Jianxiu, Cyclic bandwidth sum of graphs. Appl. Math. A J. Chin. Univ. 16(2), 115–121 (2001)

    Article  MathSciNet  Google Scholar 

  29. B. Karrer, M.E.J. Newman, Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  MathSciNet  Google Scholar 

  30. T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics (Springer, Berlin, 1995)

    Google Scholar 

  31. L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuno, From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MathSciNet  Google Scholar 

  32. X.F. Liu, K.T. Chi, M. Small, Complex network structure of musical compositions: algorithmic generation of appealing music. Phys. A Stat. Mech. Appl. 389(1), 126–132 (2010)

    Google Scholar 

  33. A.G. Marques, S. Segarra, G. Leus, A. Ribeiro, Sampling of graph signals with successive local aggregations (2015), arXiv:1504.04687

  34. N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Complex network approach for recurrence analysis of time series. Phys. Lett. A 373(46), 4246–4254 (2009)

    Article  Google Scholar 

  35. M. Meila, J. Shi, A random walks view of spectral segmentation, in 8th International Workshop on Artificial Intelligence and Statistics (2001)

    Google Scholar 

  36. S.K. Narang, A. Ortega, Perfect reconstruction two-channel wavelet filter banks for graph structured data. IEEE Trans. Signal Process. 60(6), 2786–2799 (2012)

    Article  MathSciNet  Google Scholar 

  37. M. Newman, Networks: An Introduction (Oxford University Press Inc, New York, 2010)

    Book  Google Scholar 

  38. H.Q. Nguyen, M.N. Do, Downsampling of signals on graphs via maximum spanning trees. IEEE Trans. Signal Process. 63(1), 182–191 (2015)

    Article  MathSciNet  Google Scholar 

  39. A.M. Nuñez, L. Lacasa, J.P. Gomez, B. Luque, Visibility algorithms: a short review. INTECH Open Access Publisher (2012)

    Google Scholar 

  40. S. O’Rourke, V. Vu, K. Wang, Eigenvectors of random matrices: a survey. J. Comb. Theory Ser. A 144, 361–442 (2016)

    Google Scholar 

  41. N. Otsu, A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  42. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  43. A. Sakiyama, Y. Tanaka, Oversampled graph Laplacian matrix for graph filter banks. IEEE Trans. Signal Process. 62(24), 6425–6437 (2014)

    Google Scholar 

  44. A. Sandryhaila, J.M.F. Moura, Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014)

    Google Scholar 

  45. Y. Shimada, T. Kimura, T. Ikeguchi, Analysis of chaotic dynamics using measures of the complex network theory, in 2008 Artificial Neural Networks-ICANN (Springer, Berlin, 2008), pp. 61–70

    Google Scholar 

  46. Y. Shimada, T. Ikeguchi, T. Shigehara, From networks to time series. Phys. Rev. Lett. 109(15), 158701 (2012)

    Google Scholar 

  47. D.I. Shuman, M. Javad Faraji, P. Vandergheynst, A framework for multiscale transforms on graphs (2013), arXiv:1308.4942

  48. D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Google Scholar 

  49. D.I. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. (2015)

    Google Scholar 

  50. N. Tremblay, P. Borgnat, Graph wavelets for multiscale community mining. IEEE Trans. Signal Process. 62(20), 5227–5239 (2014)

    Google Scholar 

  51. N. Tremblay, P. Borgnat, Subgraph-based filterbanks for graph signals. IEEE Trans. Signal Process. 64(15), 3827–3840 (2016)

    Google Scholar 

  52. M. Tsitsvero, S. Barbarossa, On the degrees of freedom of signals on graphs, in 23rd European Signal Processing Conference (EUSIPCO) (Nice, France, 2015), p. 2015

    Google Scholar 

  53. S. van der Walt, S.C. Colbert, G. Varoquaux, The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Google Scholar 

  54. P. Van Mieghem, Graph Spectra for Complex Networks (Cambridge University, Cambridge, 2011)

    Google Scholar 

  55. U. Von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Google Scholar 

  56. M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, S. Lukauskas, D.C. Gemperline, T. Augspurger, Y. Halchenko, J.B. Cole, J. Warmenhoven, J. de Ruiter, C. Pye, S. Hoyer, J. Vanderplas, S. Villalba, G. Kunter, E. Quintero, P. Bachant, M. Martin, K. Meyer, A. Miles, Y. Ram, T. Yarkoni, M. Williams, C. Evans, C. Fitzgerald, Brian, C. Fonnesbeck, A. Lee, A. Qalieh, mwaskom/seaborn: v0.8.1 (2017)

    Google Scholar 

  57. D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Google Scholar 

  58. T. Weng, Y. Zhao, M. Small, D. Huang, Time-series analysis of networks: exploring the structure with random walks. Phys. Rev. E 90(2), 022804 (2014)

    Google Scholar 

  59. Y. Yang, H. Yang, Complex network-based time series analysis. Phys. A Stat. Mech. Appl. 387(5–6), 1381–1386 (2008)

    Google Scholar 

  60. W.W. Zachary, An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Google Scholar 

  61. J. Zhang, M. Small, Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96(23), 238701 (2006)

    Google Scholar 

Download references

Acknowledgements

Figures displayed in this article have been created using Python and the following libraries: matplotlib/seaborn [27, 56], networkx [20], numpy/scipy [53], and sklearn [42]. All the code is available at the following url: https://github.com/r-hamon/pygas.

This work was supported by the programs ARC 5 and ARC 6 of the région Rhône-Alpes, and the ANR projects Vél’Innov ANR-12-SOIN-0001-02 and GRAPHSIP ANR-14-CE27-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Hamon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamon, R., Borgnat, P., Flandrin, P., Robardet, C. (2019). Transformation from Graphs to Signals and Back. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03574-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03573-0

  • Online ISBN: 978-3-030-03574-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics