Skip to main content

Review of Swarm Intelligence Algorithms for Multi-objective Flowshop Scheduling

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11226))

Included in the following conference series:

Abstract

Swarm intelligence algorithm (SIA) is an important artificial intelligence technology, which has been widely applied in various research fields. Recently, adopting various multi-objective SIAs (MOSIAs) to solve multi-objective flow shop scheduling problem (MOFSP) has attracted wide research attention. However, there are fewer review papers on the MOFSP. Many new MOSIAs have been proposed to solve MOFSP in the last decade. Therefore, in this study, MOSIAs of MOFSP over the past decade are briefly reviewed and analyzed. Based on the existing problems and new trend of Industry 4.0, several new promising future research directions are pointed out. These research directions are: (1) new hybrid MOSIA; (2) MOSIA with high computational efficiency; (3) MOSIA based on machine learning and big data; (4) multi-objective approach; (5) many-objective flowshop scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing, Y., Chen, Y., Lv, C., et al.: Swarm intelligence-based power allocation and relay selection algorithm for wireless cooperative network. KSII Trans. Internet Inf. Syst. 10(3), 1111–1130 (2016)

    Google Scholar 

  2. Lazzús, J.A., Rivera, M., López-Caraballo, C.H.: Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Phys. Lett. A 380(11–12), 1164–1171 (2016)

    Article  MathSciNet  Google Scholar 

  3. Zhang, X., Zhang, X.: Shift based adaptive differential evolution for PID controller designs using swarm intelligence algorithm. Clust. Comput. 20(1), 1–9 (2016)

    Google Scholar 

  4. De, D.H., Villarubia, G., DePaz, J.F., et al.: Multi-sensor information fusion for optimizing electric bicycle routes using a swarm intelligence algorithm. Sensors 17(11), 2501 (2017)

    Article  Google Scholar 

  5. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multi-objective algorithms for the flowshop scheduling problem. Inf. J. Comput. 20(3), 451–471 (2008)

    Article  Google Scholar 

  6. Sun, Y., Zhang, C., Gao, L., Wang, X.: Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects. Int. J. Adv. Manuf. Technol. 55(5–8), 723–739 (2011)

    Article  Google Scholar 

  7. Yenisey, M.M., Yagmahan, B.: Multi-objective permutation flow shop scheduling problem: literature review, classification and current trends. Omega 45(2), 119–135 (2014)

    Article  Google Scholar 

  8. Lin, S.W., Ying, K.C.: Minimizing makespan and total flow time in permutation flow shops by a bi-objective multi-start simulated-annealing algorithm. Comput. Oper. Res. 40(6), 1625–1647 (2013)

    Article  MathSciNet  Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Michigan (1975)

    Google Scholar 

  10. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  11. Chang, P.C., Chen, S.H., Fan, C.Y., et al.: Genetic algorithm integrated with artificial chromosomes for multi-objective flowshop scheduling problems. Appl. Math. Comput. 205(2), 550–561 (2008)

    MATH  Google Scholar 

  12. Framinan, J.M.: A fitness-based weighting mechanism for multicriteria flowshop scheduling using genetic algorithms. Int. J. Adv. Manuf. Technol. 43(9–10), 939–948 (2009)

    Article  Google Scholar 

  13. Pour, N.S., Tavakkolimoghaddam, R., Asadi, H.: Optimizing a multi-objectives flow shop scheduling problem by a novel genetic algorithm. Int. J. Ind. Eng. Comput. 4(3), 345–354 (2013)

    Google Scholar 

  14. Karimi, N., Davoudpour, H.: A high performing metaheuristic for multi-objective flowshop scheduling problem. Comput. Oper. Res. 52, 149–156 (2014)

    Article  MathSciNet  Google Scholar 

  15. Fu, Y., Huang, M., Wang, H., et al.: Multipopulation multiobjective genetic algorithm for multiobjective permutation flow shop scheduling problem. Control Theor. Appl. 10(33), 1281–1288 (2016)

    MATH  Google Scholar 

  16. Rajkumar, R., Shahabudeen, P.: Bi-criteria improved genetic algorithm for scheduling in flowshops to minimize makespan and total flowtime of jobs. Int. J. Comput. Integr. Manuf. 22(10), 987–998 (2009)

    Article  Google Scholar 

  17. Ruiz, R., Allahverdi, A.: Minimizing the bicriteria of makespan and maximum tardiness with an upper bound on maximum tardiness. Comput. Oper. Res. 36(4), 1268–1283 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  19. Uysal, O., Bulkan, S.: Comparison of genetic algorithm and particle swarm optimization for bicriteria permutation flowshop scheduling problem. Int. J. Comput. Intell. Res. 4(2), 159–175 (2008)

    MathSciNet  Google Scholar 

  20. Li, B.B., Wang, L., Liu, B.: An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling. IEEE Trans. Syst. Man, Cybern.-Part A: Syst. Humans 38(4), 818–831 (2008)

    Article  Google Scholar 

  21. Sha, D.Y., Lin, H.H.: A particle swarm optimization for multi-objective flowshop scheduling. Int. J. Adv. Manuf. Technol. 45(7–8), 749–758 (2009)

    Article  Google Scholar 

  22. Tsai, J.T., Yang, C.I., Chou, J.H.: Hybrid sliding level Taguchi-based particle swarm optimization for flowshop scheduling problems. Appl. Soft Comput. 15(2), 177–192 (2014)

    Article  Google Scholar 

  23. Yang, C.I., Chou, J.H., Chang, C.K.: Hybrid Taguchi-based particle swarm optimization for flowshop scheduling problem. Arab. J. Sci. Eng. 39(3), 2393–2412 (2014)

    Article  Google Scholar 

  24. He, L.J., Liu, C., Zhu, G.Y.: High-dimensional multi-objective flow shop scheduling optimization based on relative entropy of fuzzy sets. Comput. Integr. Manuf. Syst. 21(10), 2704–2710 (2015)

    Google Scholar 

  25. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2007)

    Article  Google Scholar 

  26. Yagmahan, B., Yenisey, M.M.: A multi-objective ant colony system algorithm for flow shop scheduling problem. Expert Syst. Appl. 37(2), 1361–1368 (2010)

    Article  Google Scholar 

  27. Rabanimotlagh, A.: An efficient ant colony optimization algorithm for multiobjective flow shop scheduling problem. World Acad. Sci. Eng. Technol. 5(3), 598–604 (2011)

    Google Scholar 

  28. Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_6

    Chapter  Google Scholar 

  29. Chiang, T.C., Cheng, H.C., Fu, L.C.: NNMA: an effective memetic algorithm for solving multiobjective permutation flow shop scheduling problems. Expert Syst. Appl. 38(5), 5986–5999 (2011)

    Article  Google Scholar 

  30. Li, X.T., Ma, S.J.: Multi-objective memetic search algorithm for multi-objective permutation flow shop scheduling problem. IEEE Access 4, 2154–2165 (2017)

    Article  Google Scholar 

  31. Larranaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Press, Boston (2002)

    Book  Google Scholar 

  32. Chang, P.C.: A pareto block-based estimation and distribution algorithm for multi-objective permutation flow shop scheduling problem. Int. J. Prod. Res. 53(3), 793–834 (2015)

    Article  Google Scholar 

  33. Zangari, M., Mendiburu, A., Santana, R., Pozo, A.: Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem. Inf. Sci. 397(C), 137–154 (2017)

    Article  Google Scholar 

  34. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(C), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  35. Pan, Q.K., Wang, L., Qian, B.: A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Comput. Oper. Res. 36(8), 2498–2511 (2009)

    Article  MathSciNet  Google Scholar 

  36. Zhu, G.Y., Chen, X.B., Liu, Y.L.: Flow shop multi-objective scheduling optimization research based on grey entropy relation analysis and the algorithm relation. Control Decis. 29(1), 135–140 (2014)

    Google Scholar 

  37. Tavakkoli-Moghaddam, R., Rahimi-Vahed, A.R., Mirzaei, A.H.: Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int. J. Adv. Manuf. Technol. 36(9–10), 969–981 (2008)

    Article  Google Scholar 

  38. Rahimi-Vahed, A., Dangchi, M., Rafiei, H., et al.: A novel hybrid multi-objective shuffled frog-leaping algorithm for a bi-criteria permutation flow shop scheduling problem. Int. J. Adv. Manuf. Technol. 41(11–12), 1227–1239 (2009)

    Article  Google Scholar 

  39. Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan. Knowl.-Based Syst. 23(2), 77–85 (2010)

    Article  Google Scholar 

  40. Frosolini, M., Braglia, M., Zammori, F.A.: A modified harmony search algorithm for the multi-objective flow shop scheduling problem with due dates. Int. J. Prod. Res. 49(20), 5957–5985 (2011)

    Article  Google Scholar 

  41. Chen, K.J., Zhou, X.M.: Improved food chain algorithm for multi objective permutation flow shop scheduling. China Mech. Eng. 26(3), 348–353 (2015)

    Google Scholar 

  42. Xu, Z.H., Li, J.M., Gu, X.S.: Multi-objective flow shop scheduling problem based on GMOGSO. Control Decis. 31(10), 1772–1778 (2016)

    MATH  Google Scholar 

  43. Huang, X., Ye, C.M., Cao, L.: Chaos invasive weed optimization algorithm for multiobjective permutation flow shop scheduling problem. Syst. Eng.-Theory Pract. 37(1), 253–262 (2017)

    Google Scholar 

  44. Zhu, G.Y., He, L.J., Ju, X.W., Zhang, W.B.: A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEA. Eur. J. Oper. Res. 265(3), 813–828 (2018)

    Article  MathSciNet  Google Scholar 

  45. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)

    Article  Google Scholar 

  46. Chia, J.Y., Goh, C.K., Shim, V.A., et al.: A data mining approach to evolutionary optimisation of noisy multi-objective problems. Int. J. Syst. Sci. 43(7), 1217–1247 (2012)

    Article  Google Scholar 

  47. Wang, X.P., Tang, L.X.: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization. Inf. Sci. 348(2), 124–141 (2016)

    Article  Google Scholar 

  48. Zhang, H.X., Lu, J.: Adaptive evolutionary programming based on reinforcement learning. Inf. Sci. 178(4), 971–984 (2008)

    Article  MathSciNet  Google Scholar 

  49. Zhang, J., Zhan, Z.H., Lin, Y., et al.: Evolutionary computation meets machine learning: a survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011)

    Article  Google Scholar 

  50. Luo, Y., Duan, Y., Li, W.F., Pace, P., Fortino, G.: Workshop networks integration using mobile intelligence in smart factories. IEEE Commun. Mag. 56(2), 68–75 (2018)

    Article  Google Scholar 

  51. Luo, Y., Duan, Y., Li, F.W., Pace, P., Fortino, G.: A novel mobile and hierarchical data transmission architecture for smart factories. IEEE Trans. Industr. Inf. 14(8), 3534–3546 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (61571336 and 71874132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, L., Li, W., Zhang, Y., Cao, J. (2018). Review of Swarm Intelligence Algorithms for Multi-objective Flowshop Scheduling. In: Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J. (eds) Internet and Distributed Computing Systems. IDCS 2018. Lecture Notes in Computer Science(), vol 11226. Springer, Cham. https://doi.org/10.1007/978-3-030-02738-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02738-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02737-7

  • Online ISBN: 978-3-030-02738-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics