Skip to main content

Formalising Extended Finite State Machine Transition Merging

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2018)

Abstract

Model inference from system traces, e.g. for analysing legacy components or generating security tests for distributed components, is a common problem. Extended Finite State Machine (EFSM) models, managing an internal data state as a set of registers, are particularly well suited for capturing the behaviour of stateful components however existing inference techniques for (E)FSMs lack the ability to infer the internal state and its update functions.

In this paper, we present the underpinning formalism for an EFSM inference technique that involves the merging of transitions with updates to the internal data state. Our model is formalised in Isabelle/HOL, allowing for the machine-checked validation of transition merges and system properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75, 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. C-21(6), 592–597 (1972). https://doi.org/10.1109/TC.1972.5009015

    Article  MathSciNet  Google Scholar 

  3. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18216-7

    Book  MATH  Google Scholar 

  4. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the extended finite state machine model. In: International Design Automation Conference (DAC), pp. 86–91. ACM Press, New York (1993). https://doi.org/10.1145/157485.164585

  5. Damas, C., Lambeau, B., Dupont, P., Van Lamsweerde, A.: Generating annotated behavior models from end-user scenarios. IEEE Trans. Softw. Eng. 31(12), 1056–1073 (2005). https://doi.org/10.1109/TSE.2005.138

    Article  Google Scholar 

  6. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z, 2nd edn. Springer, London (2014). https://doi.org/10.1007/978-1-4471-5355-9

    Book  MATH  Google Scholar 

  7. Dupont, P., Lambeau, B., Damas, C., Van Lamsweerde, A.: The QSM algorithm and its application to software behavior model induction. Appl. Artif. Intell. 22(1–2), 77–115 (2008). https://doi.org/10.1080/08839510701853200

    Article  Google Scholar 

  8. Eilenberg, S.: Automata, Languages, and Machines. Academic Press Inc., Orlando (1974)

    MATH  Google Scholar 

  9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE Trans. Softw. Eng. 27(2), 99–123 (2001). https://doi.org/10.1109/32.908957

    Article  Google Scholar 

  10. Fraser, G., Walkinshaw, N.: Behaviourally adequate software testing. In: International Conference on Software Testing, Verification and Validation, pp. 300–309, April 2012. https://doi.org/10.1109/ICST.2012.110

  11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MathSciNet  Google Scholar 

  12. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  13. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054059

    Chapter  Google Scholar 

  14. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In: International Workshop on Dynamic Systems Analysis (WODA), p. 25. ACM Press, New York (2006). https://doi.org/10.1145/1138912.1138919

  15. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral models. In: International Conference on Software Engineering (ICSE), p. 501. ACM Press, New York (2008). https://doi.org/10.1145/1368088.1368157

  16. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  17. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing. IEEE Trans. Softw. Eng. 30(1), 29–42 (2004). https://doi.org/10.1109/TSE.2004.1265734

    Article  MATH  Google Scholar 

  18. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013). https://doi.org/10.1007/s10664-012-9210-3

    Article  Google Scholar 

  19. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine models from software executions. Empir. Softw. Eng. 21(3), 811–853 (2016). https://doi.org/10.1007/s10664-015-9367-7

    Article  Google Scholar 

  20. Weyuker, E.J.: Assessing test data adequacy through program inference. ACM Trans. Program. Lang. Syst. 5(4), 641–655 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foster, M., Taylor, R.G., Brucker, A.D., Derrick, J. (2018). Formalising Extended Finite State Machine Transition Merging. In: Sun, J., Sun, M. (eds) Formal Methods and Software Engineering. ICFEM 2018. Lecture Notes in Computer Science(), vol 11232. Springer, Cham. https://doi.org/10.1007/978-3-030-02450-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02450-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02449-9

  • Online ISBN: 978-3-030-02450-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics