Skip to main content

Biological Pathways of HPV-Induced Carcinogenesis

  • Chapter
  • First Online:
Sexually Transmitted Infections

Abstract

Human papillomavirus (HPV) infection is the most common sexually transmitted viral infection. The majority of genital HPV infections are transient and do not induce any clinical manifestations, because they are rapidly and efficiently cleared by the host immune system. Rarely, a persistent infection is established by high-risk (HR) mucosal HPV genotypes (e.g., HPV16), so that pre-neoplastic and neoplastic lesions may develop. HR-HPVs are involved in the development of about 5% of all human cancers, especially at anogenital sites but also in the head and neck region. Two viral oncoproteins, E6 and E7, are the main drivers of HPV-mediated carcinogenesis, because of their ability to bind to a surprisingly high number of cellular targets, including p53 and pRb tumor suppressors, and to subvert pathways involved in cell cycle regulation, immune response, and genome integrity. In addition, E6 and E7 profoundly alter the host epigenome, further deregulating the expression of cellular tumor suppressors, oncogenes, and immune-related genes. Over time, the interplay between these oncoproteins and the consequent disruption of key cellular pathways lead to the irreversible acquisition of a malignant phenotype. The monoclonal expansion of the HPV-infected cell(s) with the greatest growth advantage will ultimately lead to cancer. The complex and intimately linked series of events of mucosal HPV-induced tumorigenesis, which is mostly clarified for HPV-associated cervical cancer, is still largely unknown for other HPV-driven cancers. Certain cutaneous HPVs, particularly beta HPVs, appear to play a role in the etiology of skin cancer, although major gaps of knowledge remain about their carcinogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Villiers EM. Cross-roads in the classification of papillomaviruses. Virology. 2013;445(1–2):2–10.

    Article  PubMed  CAS  Google Scholar 

  2. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology. 2004;324:17–27.

    Article  PubMed  CAS  Google Scholar 

  3. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Alemany L, Saunier M, Alvarado-Cabrero I, QuirĂ³s B, Salmeron J, Shin HR, et al. Human papillomavirus DNA prevalence and type distribution in anal carcinomas worldwide. Int J Cancer. 2015;136(1):98–107.

    Article  PubMed  CAS  Google Scholar 

  5. Haeggblom L, Ramqvist T, Tommasino M, Dalianis T, Nasman A. Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. Papillomavirus Res. 2017;4:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marur S, D'Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Castellsague X, Alemany L, Quer M, Halec G, Quiros B, Tous S, et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J Natl Cancer Inst. 2016;108(6):djv403.

    Article  PubMed  CAS  Google Scholar 

  8. IARC. Monographs on the evaluation of carcinogenic risks to humans. In: A review of human carcinogens: biological agents, vol. 100B. IARC: Lyon; 2011.

    Google Scholar 

  9. Accardi R, Cutaneous GT. HPV and skin cancer. Presse Med. 2014;43(12P2):e435–43.

    Article  PubMed  Google Scholar 

  10. Patel T, Morrison LK, Rady P, Tyring S. Epidermodysplasia verruciformis and susceptibility to HPV. Dis Markers. 2010;29(3–4):199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  11. zur Hausen H. Papillomaviruses in the causation of human cancers - a brief historical account. Virology. 2009;384:260–5.

    Article  PubMed  CAS  Google Scholar 

  12. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A. 2012;109(26):10516–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bodily J, Laimins LA. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 2011;19(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  14. Cornet I, Gheit T, Franceschi S, Vignat J, Burk RD, Sylla BS, et al. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol. 2012;86(12):6855–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Burk RD, Harari A, Chen Z. Human papillomavirus genome variants. Virology. 2013;445(1–2):232–43.

    Article  PubMed  CAS  Google Scholar 

  16. Steinbach A, Riemer AB. Immune evasion mechanisms of human papillomavirus: an update. Int J Cancer. 2018;142(2):224–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol. 2007;178:3186–97.

    Article  PubMed  CAS  Google Scholar 

  18. Hasan UA, Zannetti C, Parroche P, Goutagny N, Malfroy M, Roblot G, et al. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the toll-like receptor 9 promoter. J Exp Med. 2013;210(7):1369–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huang SM, McCance DJ. Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J Virol. 2002;76:8710–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology. 1999;259:305–13.

    Article  PubMed  CAS  Google Scholar 

  21. Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem. 2000;275:6764–9.

    Article  PubMed  CAS  Google Scholar 

  22. Perea SE, Massimi P, Banks L. Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int J Mol Med. 2000;5:661–6.

    PubMed  CAS  Google Scholar 

  23. Georgopoulos NT, Proffitt JL, Blair GE. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene. 2000;19:4930–5.

    Article  PubMed  CAS  Google Scholar 

  24. Cromme FV, Meijer CJ, Snijders PJ, Uyterlinde A, Kenemans P, Helmerhorst T, et al. Analysis of MHC class I and II expression in relation to presence of HPV genotypes in premalignant and malignant cervical lesions. Br J Cancer. 1993;67:1372–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dick FA, Sailhamer E, Dyson NJ. Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol Cell Biol. 2000;20:3715–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bashaw AA, Leggatt GR, Chandra J, Tuong ZK, Frazer IH. Modulation of antigen presenting cell functions during chronic HPV infection. Papillomavirus Res. 2017 Dec;4:58–65.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Groves IJ, Coleman N. Human papillomavirus genome integration in squamous carcinogenesis: what have next generation sequencing studies taught us? J Pathol. 2018;245(1):9–18. https://doi.org/10.1002/path.5058.

    Article  PubMed  CAS  Google Scholar 

  28. Cancer Genome Atlas Research Network. Albert Einstein College of Medicine, analytical biological services, Barretos cancer hospital, Baylor College of Medicine, Beckman Research Institute of City of Hope, et al. integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84.

    Article  CAS  Google Scholar 

  29. Parfenov M, Pedamallu CS, Gehlenborg N, Freeman SS, Danilova L, Bristow CA, et al. Characterization of HPV and host genome interactions in primary head and neck cancers. Proc Natl Acad Sci U S A. 2014;111(43):15544–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gao G, Johnson SH, Kasperbauer JL, Eckloff BW, Tombers NM, Vasmatzis G, et al. Mate pair sequencing of oropharyngeal squamous cell carcinomas reveals that HPV integration occurs much less frequently than in cervical cancer. J Clin Virol. 2014;59(3):195–200.

    Article  PubMed  Google Scholar 

  31. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47(2):158–63.

    Article  PubMed  CAS  Google Scholar 

  32. Choo KB, Pan CC, Han SH. Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology. 1987;161:259–61.

    Article  PubMed  CAS  Google Scholar 

  33. Corden SA, Sant-Cassia LJ, Easton AJ, Morris AG. The integration of HPV-18 DNA in cervical carcinoma. Mol Pathol. 1999;52:275–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995;92:1654–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hafner N, Driesch C, Gajda M, Jansen L, Kirchmayr R, Runnebaum IB, et al. Integration of the HPV16 genome does not invariably result in high levels of viral oncogene transcripts. Oncogene. 2008;27(11):1610–7.

    Article  PubMed  CAS  Google Scholar 

  36. Gao G, Johnson SH, Vasmatzis G, Pauley CE, Tombers NM, Kasperbauer JL, et al. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer. 2017;56(1):59–74.

    Article  PubMed  CAS  Google Scholar 

  37. Schmitz M, Driesch C, Beer-Grondke K, Jansen L, Runnebaum IB, Durst M. Loss of gene function as a consequence of human papillomavirus DNA integration. Int J Cancer. 2012;131:E593–602.

    Article  PubMed  CAS  Google Scholar 

  38. Duensing S, Munger K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 2002;62:7075–82.

    PubMed  CAS  Google Scholar 

  39. Thomas LK, Bermejo JL, Vinokurova S, Jensen K, Bierkens M, Steenbergen R, et al. Chromosomal gains and losses in human papillomavirus-associated neoplasia of the lower genital tract - a systematic review and meta-analysis. Eur J Cancer. 2014;50(1):85–98.

    Article  PubMed  CAS  Google Scholar 

  40. Duensing S, Munger K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol. 2003;77:12331–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 2003;63:4862–71.

    PubMed  CAS  Google Scholar 

  42. Duensing A, Liu Y, Perdreau SA, Kleylein-Sohn J, Nigg EA, Duensing S. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene. 2007;26(43):6280–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nguyen CL, Munger K. The human papillomavirus type 16 E7 Oncoprotein associates with the Centrosomal component gamma-tubulin. J Virol. 2007;81(24):13533–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A. 2000;97:10002–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Smotkin D, Wettstein FO. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proc Natl Acad Sci U S A. 1986;83:4680–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Androphy EJ, Lowy DR, Schiller JT. Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA. Nature. 1987;325:70–3.

    Article  PubMed  CAS  Google Scholar 

  47. Baker CC, Phelps WC, Lindgren V, Braun MJ, Gonda MA, Howley PM. Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol. 1987;61:962–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. DiMaio D, Petti LM. The E5 proteins. Virology. 2013;445(1–2):99–114.

    Article  PubMed  CAS  Google Scholar 

  49. Goodwin EC, Yang E, Lee CJ, Lee HW, DiMaio D, Hwang ES. Rapid induction of senescence in human cervical carcinoma cells. Proc Natl Acad Sci USA. 2000;97:10978–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Goodwin EC, DiMaio D. Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci U S A. 2000;97:12513–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J. 2000;19:5762–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989;8:3905–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989;63:4417–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Spanos WC, Geiger J, Anderson ME, Harris GF, Bossler AD, Smith RB, et al. Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cells. Head Neck. 2008 Feb;30(2):139–47.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Calcada EO, Felli IC, Hosek T, Pierattelli R. The heterogeneous structural behavior of E7 from HPV16 revealed by NMR spectroscopy. Chembiochem. 2013;14(14):1876–82.

    Article  PubMed  CAS  Google Scholar 

  56. Trave G, Zanier K. HPV-mediated inactivation of tumor suppressor p53. Cell Cycle. 2016;15(17):2231–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, et al. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A. 2012;109(5):E260–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW, Howley PM. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol. 2012;86(24):13174–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cobrinik D. Pocket proteins and cell cycle control. Oncogene. 2005;24:2796–809.

    Article  PubMed  CAS  Google Scholar 

  60. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    Article  PubMed  CAS  Google Scholar 

  61. Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 1991;10:4129–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 2016;529(7587):541–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ganti K, Broniarczyk J, Manoubi W, Massimi P, Mittal S, Pim D, et al. The human papillomavirus E6 PDZ binding motif: from life cycle to malignancy. Viruses. 2015;7(7):3530–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996;380(6569):79–82.

    Article  PubMed  CAS  Google Scholar 

  65. Gewin L, Myers H, Kiyono T, Galloway DA. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004;18(18):2269–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Villa LL, Vieira KB, Pei XF, Schlegel R. Differential effect of tumor necrosis factor on proliferation of primary human keratinocytes and cell lines containing human papillomavirus types 16 and 18. Mol Carcinog. 1992;6:5–9.

    Article  PubMed  CAS  Google Scholar 

  67. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, et al. TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell. 1990;61:777–85.

    Article  PubMed  CAS  Google Scholar 

  68. Zerfass K, Levy LM, Cremonesi C, Ciccolini F, Jansen-Durr P, Crawford L, et al. Cell cycle-dependent disruption of E2F-p107 complexes by human papillomavirus type 16 E7. J Gen Virol. 1995;76(7):1815–20.

    Article  PubMed  CAS  Google Scholar 

  69. Demers GW, Espling E, Harry JB, Etscheid BG, Galloway DA. Abrogation of growth arrest signals by human papillomavirus type 16 E7 is mediated by sequences required for transformation. J Virol. 1996;70:6862–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7.

    Article  PubMed  CAS  Google Scholar 

  71. Smith-McCune K, Kalman D, Robbins C, Shivakumar S, Yuschenkoff L, Bishop JM. Intranuclear localization of human papillomavirus 16 E7 during transformation and preferential binding of E7 to the Rb family member p130. Proc Natl Acad Sci U S A. 1999;96:6999–7004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Schmitt A, Harry JB, Rapp B, Wettstein FO, Iftner T. Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol. 1994;68:7051–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Giarre’ M, Caldeira S, Malanchi I, Ciccolini F, Leao MJ, Tommasino M. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle arrest. J Virol. 2001;75:4705–12.

    Article  Google Scholar 

  74. Dyson N, Guida P, McCall C, Harlow E. Adenovirus E1A makes two distinct contacts with the retinoblastoma protein. J Virol. 1992;66:4606–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Dyson N, Guida P, Munger K, Harlow E. Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol. 1992;66:6893–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.

    Article  PubMed  CAS  Google Scholar 

  77. Chen S, Paucha E. Identification of a region of simian virus 40 large T antigen required for cell transformation. J Virol. 1990;64:3350–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Imai Y, Matsushima Y, Sugimura T, Terada M. Purification and characterization of human papillomavirus type 16 E7 protein with preferential binding capacity to the underphosphorylated form of retinoblastoma gene product. J Virol. 1991;65:4966–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC, et al. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci U S A. 1992;89:4549–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 2002;277:2923–30.

    Article  PubMed  CAS  Google Scholar 

  81. Menges CW, Baglia LA, Lapoint R, McCance DJ. Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res. 2006;66:5555–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Smeets SJ, Hesselink AT, Speel EJ, Haesevoets A, Snijders PJ, Pawlita M, et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer. 2007;121(11):2465–72.

    Article  PubMed  CAS  Google Scholar 

  83. Westra WH, Lewis JS. Jr. update from the 4th edition of the World Health Organization classification of head and neck Tumours: oropharynx. Head Neck Pathol. 2017;11(1):41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  84. McLaughlin-Drubin ME, Crum CP, Munger K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A. 2011;108(5):2130–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. McLaughlin-Drubin ME, Park D, Munger K. Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci U S A. 2013;110(40):16175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pauck A, Lener B, Hoell M, Kaiser A, Kaufmann AM, Zwerschke W, et al. Depletion of the cdk inhibitor p16INK4a differentially affects proliferation of established cervical carcinoma cells. J Virol. 2014;88(10):5256–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Balsitis SJ, Sage J, Duensing S, Munger K, Jacks T, Lambert PF. Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol Cell Biol. 2003;23:9094–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tommasino M, Adamczewski JP, Carlotti F, Barth CF, Manetti R, Contorni M, et al. HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene. 1993;8:195–202.

    PubMed  CAS  Google Scholar 

  89. McIntyre MC, Ruesch MN, Laimins LA. Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107. Virology. 1996;215:73–82.

    Article  PubMed  CAS  Google Scholar 

  90. Funk JO, Waga S, Harry JB, Espling E, Stillman B, Galloway DA. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 1997;11:2090–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997;11:2101–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zerfass-Thome K, Zwerschke W, Mannhardt B, Tindle R, Botz JW, Jansen-Durr P. Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene. 1996;13:2323–30.

    PubMed  CAS  Google Scholar 

  93. McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol. 2003;23:216–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Besson A, Gurian-West M, Schmidt A, Hall A. Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 2004;18:862–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Katich SC, Zerfass-Thome K, Hoffmann I. Regulation of the Cdc25A gene by the human papillomavirus type 16 E7 oncogene. Oncogene. 2001;20:543–50.

    Article  PubMed  CAS  Google Scholar 

  96. Vousden KH, Vojtesek B, Fisher C, Lane D. HPV-16 E7 or adenovirus E1A can overcome the growth arrest of cells immortalized with a temperature-sensitive p53. Oncogene. 1993;8:1697–702.

    PubMed  CAS  Google Scholar 

  97. Demers GW, Foster SA, Halbert CL, Galloway DA. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc Natl Acad Sci U S A. 1994;91:4382–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Demers GW, Halbert CL, Galloway DA. Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology. 1994;198:169–74.

    Article  PubMed  CAS  Google Scholar 

  99. Seavey SE, Holubar M, Saucedo LJ, Perry ME. The E7 oncoprotein of human papillomavirus type 16 stabilizes p53 through a mechanism independent of p19(ARF). J Virol. 1999;73:7590–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Pan H, Griep AE. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 1994;8:1285–99.

    Article  PubMed  CAS  Google Scholar 

  101. Thomas M, Banks L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene. 1998;17:2943–54.

    Article  PubMed  CAS  Google Scholar 

  102. Soto D, Song C, McLaughlin-Drubin ME. Epigenetic alterations in human papillomavirus-associated cancers. Viruses. 2017;9(9):248. https://doi.org/10.3390/v9090248.

    Article  PubMed Central  CAS  Google Scholar 

  103. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 1999;18:2449–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Longworth MS, Laimins LA. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol. 2004;78:3533–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Li H, Ou X, Xiong J, Wang T. HPV16E7 mediates HADC chromatin repression and downregulation of MHC class I genes in HPV16 tumorigenic cells through interaction with an MHC class I promoter. Biochem Biophys Res Commun. 2006;349:1315–21.

    Article  PubMed  CAS  Google Scholar 

  106. Bierkens M, Hesselink AT, Meijer CJ, Heideman DA, Wisman GB, van der Zee AG, et al. CADM1 and MAL promoter methylation levels in hrHPV-positive cervical scrapes increase proportional to degree and duration of underlying cervical disease. Int J Cancer. 2013;133(6):1293–9.

    Article  PubMed  CAS  Google Scholar 

  107. Burgers WA, Blanchon L, Pradhan S, de Launoit Y, Kouzarides T, Fuks F. Viral oncoproteins target the DNA methyltransferases. Oncogene. 2007;26(11):1650–5.

    Article  PubMed  CAS  Google Scholar 

  108. Au Yeung CL, Tsang WP, Tsang TY, Co NN, Yau PL, Kwok TT. HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53. Oncol Rep. 2010;24(6):1599–604.

    PubMed  Google Scholar 

  109. Kuss-Duerkop SK, Westrich JA, Pyeon D. DNA tumor virus regulation of host DNA methylation and its implications for immune evasion and oncogenesis. Viruses. 2018;10(2):82. https://doi.org/10.3390/v10020082.

    Article  PubMed Central  CAS  Google Scholar 

  110. Rincon-Orozco B, Halec G, Rosenberger S, Muschik D, Nindl I, Bachmann A, et al. Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells. Cancer Res. 2009;69(22):8718–25.

    Article  PubMed  CAS  Google Scholar 

  111. Chaiwongkot A, Vinokurova S, Pientong C, Ekalaksananan T, Kongyingyoes B, Kleebkaow P, et al. Differential methylation of E2 binding sites in episomal and integrated HPV 16 genomes in preinvasive and invasive cervical lesions. Int J Cancer. 2013;132(9):2087–94.

    Article  PubMed  CAS  Google Scholar 

  112. Tommasino M. The biology of beta human papillomaviruses. Virus Res. 2017;231:128–38.

    Article  PubMed  CAS  Google Scholar 

  113. Viarisio D, Gissmann L, Tommasino M. Human papillomaviruses and carcinogenesis: well-established and novel models. Curr Opin Virol. 2017;26:56–62.

    Article  PubMed  CAS  Google Scholar 

  114. Viarisio D, Muller-Decker K, Accardi R, Robitaille A, Durst M, Beer K, et al. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice. PLoS Pathog. 2018;14(1):e1006783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Tommasino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DonĂ , M.G., Tommasino, M. (2020). Biological Pathways of HPV-Induced Carcinogenesis. In: Cristaudo, A., Giuliani, M. (eds) Sexually Transmitted Infections . Springer, Cham. https://doi.org/10.1007/978-3-030-02200-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02200-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02199-3

  • Online ISBN: 978-3-030-02200-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics