Skip to main content

Challenges of Human Papillomavirus Infection in Solid Organ and Hematopoietic Stem Cell Transplant Recipients

  • Living reference work entry
  • First Online:
  • 52 Accesses

Abstract

Infection of the anogenital tract with human papillomavirus (HPV) is very common. Approximately 15–20 anogenital HPV types are oncogenic or “high-risk” and are associated with 99.9% of cervical cancers, 90% of anal cancers, 70% of oropharyngeal cancers, and a high proportion of vaginal, penile, and vulvar cancers. Defects in cellular immunity make solid organ transplant (SOT) recipients particularly susceptible to persistent high-risk HPV infection, development of the cancer precursor lesion, high-grade squamous intraepithelial lesion (HSIL), and, in some cases, progression to malignancy. Hematopoietic stem cell transplant (HSCT) recipients may also be at risk for HPV-related malignancies, particularly those who require long-term immunosuppression for graft-versus-host disease. This highlights the need for cancer screening programs to detect and eliminate HSIL prior to progression to malignancy. While clear evidence exists to support the effectiveness of cervical cancer screening, the role for anal cancer screening is less clear. Anal cancer screening is recommended in high-risk SOT recipients like men who have sex with men (MSM) and can be considered in high-risk HSCT recipients. While HPV vaccines are highly effective at preventing initial HPV infection and HSIL in the general population, studies on their efficacy in SOT and HSCT recipients are limited. Ongoing work to optimize both screening and vaccination programs is currently the best option to decrease HPV-related complications in SOT and HSCT recipients.

This is a preview of subscription content, log in via an institution.

References

  1. Stanley M, Lowy DR, Frazer I. Chapter 12. Prophylactic HPV vaccines: underlying mechanisms. Vaccine. 2006;24(Suppl 3):S3/106–13.

    CAS  Google Scholar 

  2. Harwood CA, Proby CM. Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis. 2002;15(2):101–14.

    Article  Google Scholar 

  3. Weaver BA. Epidemiology and natural history of genital human papillomavirus infection. J Am Osteopath Assoc. 2006;106(3 Suppl 1):S2–8.

    Google Scholar 

  4. Satterwhite CL, et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis. 2013;40(3):187–93.

    Article  Google Scholar 

  5. Schiffman M, et al. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890–907.

    Article  CAS  Google Scholar 

  6. Centers for Disease Control and Prevention. Human papillomavirus-associated cancers – United States, 2004–2008. MMWR Morb Mortal Wkly Rep. 2012;61:258–61.

    Google Scholar 

  7. Saraiya M, et al. US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. J Natl Cancer Inst. 2015;107(6):djv086.

    Article  CAS  Google Scholar 

  8. Lacey CJ, Lowndes CM, Shah KV. Chapter 4. Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine. 2006;24(Suppl 3):S3/35–41.

    Google Scholar 

  9. Aggarwal R, et al. Prevalence and genotypes of HPV in female renal transplant recipients in North India. Int J Gynecol Pathol. 2014;33(5):537–42.

    Article  Google Scholar 

  10. Eleuterio J Jr, et al. Prevalence of high-risk HPV and atypia in liquid-based cytology of cervical and intra-anal specimens from kidney-transplanted women. Diagn Cytopathol. 2019;47(8):783–7.

    Google Scholar 

  11. Grat M, et al. Initial prevalence of anal human papilloma virus infection in liver transplant recipients. Transpl Int. 2014;27(8):816–23.

    Article  Google Scholar 

  12. Meeuwis KA, et al. Anogenital malignancies in women after renal transplantation over 40 years in a single center. Transplantation. 2012;93(9):914–22.

    Article  Google Scholar 

  13. Patel HS, et al. Human papillomavirus infection and anal dysplasia in renal transplant recipients. Br J Surg. 2010;97(11):1716–21.

    Article  CAS  Google Scholar 

  14. Pietrzak B, et al. Prevalence of high-risk human papillomavirus cervical infection in female kidney graft recipients: an observational study. Virol J. 2012;9:117.

    Article  Google Scholar 

  15. Collett D, et al. Comparison of the incidence of malignancy in recipients of different types of organ: a UK Registry audit. Am J Transplant. 2010;10(8):1889–96.

    Article  CAS  Google Scholar 

  16. Darragh T, et al. The anal canal and perianus: HPV-related disease. In: Mayeaux EJ, Cox JT, editors. Modern colposcopy: textbook and atlas. Baltimore: Lippincott, Williams, & Wilkins; 2012.

    Google Scholar 

  17. Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32(Suppl 1):S7–15.

    Article  CAS  Google Scholar 

  18. Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci. 2006;11:2286–302.

    Article  CAS  Google Scholar 

  19. Selvakumar R, et al. Regression of papillomas induced by cottontail rabbit papillomavirus is associated with infiltration of CD8+ cells and persistence of viral DNA after regression. J Virol. 1997;71(7):5540–8.

    Article  CAS  Google Scholar 

  20. Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression. Virology. 2011;414(2):153–63.

    Article  CAS  Google Scholar 

  21. Richart RM, Barron BA. A follow-up study of patients with cervical dysplasia. Am J Obstet Gynecol. 1969;105(3):386–93.

    Article  CAS  Google Scholar 

  22. Rodriguez AC, et al. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst. 2008;100(7):513–7.

    Article  Google Scholar 

  23. Darragh TM, et al. The Lower Anogenital Squamous Terminology Standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. J Low Genit Tract Dis. 2012;16(3):205–42.

    Article  Google Scholar 

  24. Wright TC, Kurman RJ, Ferenczy A. Precancerous lesions of the cervix. In: Kurman RJ, editor. Blaustein’s pathology of the female genital tract. New York: Springer; 2002. p. 277.

    Google Scholar 

  25. Fang J, Zhang H, Jin S. Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol. 2014;35(6):5083–93.

    Article  CAS  Google Scholar 

  26. Barrow-Laing L, Chen W, Roman A. Low- and high-risk human papillomavirus E7 proteins regulate p130 differently. Virology. 2010;400(2):233–9.

    Article  CAS  Google Scholar 

  27. Doorbar J, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(Suppl 5):F55–70.

    Article  CAS  Google Scholar 

  28. Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25(2):215–22.

    Article  CAS  Google Scholar 

  29. Jain S, et al. Cell-mediated immune responses to COPV early proteins. Virology. 2006;356(1–2):23–34.

    Article  CAS  Google Scholar 

  30. Coleman N, et al. Immunological events in regressing genital warts. Am J Clin Pathol. 1994;102(6):768–74.

    Article  CAS  Google Scholar 

  31. de Jong A, et al. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 2002;62(2):472–9.

    Google Scholar 

  32. Welters MJ, et al. Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Res. 2003;63(3):636–41.

    CAS  Google Scholar 

  33. Woo YL, et al. A prospective study on the natural course of low-grade squamous intraepithelial lesions and the presence of HPV16 E2-, E6- and E7-specific T-cell responses. Int J Cancer. 2010;126(1):133–41.

    Article  CAS  Google Scholar 

  34. Brickman C, Palefsky JM. Human papillomavirus in the HIV-infected host: epidemiology and pathogenesis in the antiretroviral era. Curr HIV/AIDS Rep. 2015;12(1):6–15.

    Article  Google Scholar 

  35. Dunne EF, et al. Prevalence of HPV infection among females in the United States. JAMA. 2007;297(8):813–9.

    Article  CAS  Google Scholar 

  36. Han JJ, et al. Prevalence of genital human papillomavirus infection and human papillomavirus vaccination rates among US adult men: National Health and Nutrition Examination Survey (NHANES) 2013–2014. JAMA Oncol. 2017;3(6):810–6.

    Article  Google Scholar 

  37. Scholefield JH, et al. Anal intraepithelial neoplasia: part of a multifocal disease process. Lancet. 1992;340(8830):1271–3.

    Article  CAS  Google Scholar 

  38. Palefsky JM, et al. Prevalence and risk factors for anal human papillomavirus infection in human immunodeficiency virus (HIV)-positive and high-risk HIV-negative women. J Infect Dis. 2001;183(3):383–91.

    Article  CAS  Google Scholar 

  39. Ogunbiyi OA, et al. Anal human papillomavirus infection and squamous neoplasia in patients with invasive vulvar cancer. Obstet Gynecol. 1994;83(2):212–6.

    CAS  Google Scholar 

  40. Hernandez BY, et al. Anal human papillomavirus infection in women and its relationship with cervical infection. Cancer Epidemiol Biomark Prev. 2005;14(11 Pt 1):2550–6.

    Article  Google Scholar 

  41. Meeuwis KA, et al. Cervicovaginal HPV infection in female renal transplant recipients: an observational, self-sampling based, cohort study. Am J Transplant. 2015;15(3):723–33.

    Article  CAS  Google Scholar 

  42. Forman D, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30(Suppl 5):F12–23.

    Article  Google Scholar 

  43. Hinten F, et al. Reactivation of latent HPV infections after renal transplantation. Am J Transplant. 2017;17(6):1563–73.

    Article  CAS  Google Scholar 

  44. Rosales BM, et al. Transplant recipients and anal neoplasia study: design, methods, and participant characteristics of a prevalence study. Transplant Direct. 2019;5(4):e434.

    Article  Google Scholar 

  45. Shanis D, et al. Risks factors and timing of genital human papillomavirus (HPV) infection in female stem cell transplant survivors: a longitudinal study. Bone Marrow Transplant. 2018;53(1):78–83.

    Article  CAS  Google Scholar 

  46. Larsen HK, et al. Risk of genital warts in renal transplant recipients – a registry-based, prospective cohort study. Am J Transplant. 2019;19(1):156–65.

    Article  Google Scholar 

  47. Nadhan KS, et al. Prevalence and types of genital lesions in organ transplant recipients. JAMA Dermatol. 2018;154(3):323–9.

    Article  Google Scholar 

  48. Dyall-Smith D, Trowell H, Dyall-Smith ML. Benign human papillomavirus infection in renal transplant recipients. Int J Dermatol. 1991;30(11):785–9.

    Article  CAS  Google Scholar 

  49. Madeleine MM, et al. HPV-related cancers after solid organ transplantation in the United States. Am J Transplant. 2013;13(12):3202–9.

    Article  CAS  Google Scholar 

  50. Alloub MI, et al. Human papillomavirus infection and cervical intraepithelial neoplasia in women with renal allografts. BMJ. 1989;298(6667):153–6.

    Article  CAS  Google Scholar 

  51. Ogunbiyi OA, et al. Prevalence of anal human papillomavirus infection and intraepithelial neoplasia in renal allograft recipients. Br J Surg. 1994;81(3):365–7.

    Article  CAS  Google Scholar 

  52. Negri G, et al. Abnormal cervical cytology after allogeneic bone marrow transplantation. Am J Clin Pathol. 2014;142(2):222–6.

    Article  Google Scholar 

  53. Savani BN, et al. Increased risk of cervical dysplasia in long-term survivors of allogeneic stem cell transplantation – implications for screening and HPV vaccination. Biol Blood Marrow Transplant. 2008;14(9):1072–5.

    Article  Google Scholar 

  54. Wang Y, et al. A clinical study of cervical dysplasia in long-term survivors of allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18(5):747–53.

    Article  Google Scholar 

  55. Sasadeusz J, et al. Abnormal cervical cytology in bone marrow transplant recipients. Bone Marrow Transplant. 2001;28(4):393–7.

    Article  CAS  Google Scholar 

  56. Chang HA, Armenian SH, Dellinger TH. Secondary neoplasms of the female lower genital tract after hematopoietic cell transplantation. J Natl Compr Cancer Netw. 2018;16(2):211–8.

    Article  CAS  Google Scholar 

  57. McCredie MR, et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol. 2008;9(5):425–34.

    Article  Google Scholar 

  58. Holowaty P, et al. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst. 1999;91(3):252–8.

    Article  CAS  Google Scholar 

  59. Machalek DA, et al. Anal human papillomavirus infection and associated neoplastic lesions in men who have sex with men: a systematic review and meta-analysis. Lancet Oncol. 2012;13(5):487–500.

    Article  Google Scholar 

  60. Vajdic CM, et al. Cancer incidence before and after kidney transplantation. JAMA. 2006;296(23):2823–31.

    Article  CAS  Google Scholar 

  61. Engels EA, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–901.

    Article  CAS  Google Scholar 

  62. de Sanjose S, et al. Worldwide human papillomavirus genotype attribution in over 2000 cases of intraepithelial and invasive lesions of the vulva. Eur J Cancer. 2013;49(16):3450–61.

    Article  Google Scholar 

  63. de Martel C, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  Google Scholar 

  64. Atsuta Y, et al. Continuing increased risk of oral/esophageal cancer after allogeneic hematopoietic stem cell transplantation in adults in association with chronic graft-versus-host disease. Ann Oncol. 2014;25(2):435–41.

    Article  CAS  Google Scholar 

  65. Curtis RE, et al. Solid cancers after bone marrow transplantation. N Engl J Med. 1997;336(13):897–904.

    Article  CAS  Google Scholar 

  66. Rizzo JD, et al. Solid cancers after allogeneic hematopoietic cell transplantation. Blood. 2009;113(5):1175–83.

    Article  CAS  Google Scholar 

  67. Bhatia S, et al. Solid cancers after bone marrow transplantation. J Clin Oncol. 2001;19(2):464–71.

    Article  CAS  Google Scholar 

  68. Shimada K, et al. Solid tumors after hematopoietic stem cell transplantation in Japan: incidence, risk factors and prognosis. Bone Marrow Transplant. 2005;36(2):115–21.

    Article  CAS  Google Scholar 

  69. Majhail NS, et al. Secondary solid cancers after allogeneic hematopoietic cell transplantation using busulfan-cyclophosphamide conditioning. Blood. 2011;117(1):316–22.

    Article  CAS  Google Scholar 

  70. Ringden O, et al. Second solid cancers after allogeneic hematopoietic cell transplantation using reduced-intensity conditioning. Biol Blood Marrow Transplant. 2014;20(11):1777–84.

    Article  Google Scholar 

  71. Oddou S, et al. Second neoplasms following high-dose chemotherapy and autologous stem cell transplantation for malignant lymphomas: a report of six cases in a cohort of 171 patients from a single institution. Leuk Lymphoma. 1998;31(1–2):187–94.

    Article  CAS  Google Scholar 

  72. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348(17):1681–91.

    Article  Google Scholar 

  73. Hampras SS, et al. Prevalence of cutaneous viral infections in incident cutaneous squamous cell carcinoma detected among chronic lymphocytic leukemia and hematopoietic stem cell transplant patients. Leuk Lymphoma. 2018;59(4):911–7.

    Article  Google Scholar 

  74. Omland SH, et al. Skin cancer risk in hematopoietic stem-cell transplant recipients compared with background population and renal transplant recipients: a population-based cohort study. JAMA Dermatol. 2016;152(2):177–83.

    Article  Google Scholar 

  75. Harwood CA, et al. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol. 2000;61(3):289–97.

    Article  CAS  Google Scholar 

  76. Stockfleth E, et al. Human papillomaviruses in transplant-associated skin cancers. Dermatol Surg. 2004;30(4 Pt 2):604–9.

    Google Scholar 

  77. Tambouret RH. The evolution of the Papanicolaou smear. Clin Obstet Gynecol. 2013;56(1):3–9.

    Article  Google Scholar 

  78. Chin-Hong PV, Reid GE, American Society of Transplantation Infectious Diseases Community of Practice. Human papillomavirus infection in solid organ transplant recipients – guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33:e13590.

    Article  Google Scholar 

  79. Moscicki AB, et al. Guidelines for cervical cancer screening in immunosuppressed women without HIV infection. J Low Genit Tract Dis. 2019;23(2):87–101.

    Article  Google Scholar 

  80. Acuna SA, et al. Uptake of cancer screening tests among recipients of solid organ transplantation. Am J Transplant. 2017;17(9):2434–43.

    Article  CAS  Google Scholar 

  81. Courtney AE, et al. The uptake of cervical cancer screening by renal transplant recipients. Nephrol Dial Transplant. 2009;24(2):647–52.

    Article  Google Scholar 

  82. Hwang JP, et al. Low rate of cervical cancer screening among women with hematologic malignancies after stem cell transplant. Biol Blood Marrow Transplant. 2018;24(5):1094–8.

    Article  Google Scholar 

  83. Bishop MM, et al. The preventive health behaviors of long-term survivors of cancer and hematopoietic stem cell transplantation compared with matched controls. Biol Blood Marrow Transplant. 2010;16(2):207–14.

    Article  Google Scholar 

  84. Dyer G, et al. Adherence to cancer screening guidelines in Australian survivors of allogeneic blood and marrow transplantation (BMT). Cancer Med. 2016;5(7):1702–16.

    Article  Google Scholar 

  85. New York State Department of Health AIDS Institute. HIV clinical resource: anal dysplasia and cancer. New York: New York State Department of Health; 2007. Available from: http://www.hivguidelines.org/clinical-guidelines/adults/anal-dysplasia-and-cancer/. Accessed 7 Aug 2016.

  86. AIDS Malignancy Consortium. Topical or ablative treatment in preventing anal cancer in patients with HIV and anal high-grade squamous intraepithelial lesions (ANCHOR). 2014. Available from: http://www.clinicaltrials.gov/

  87. Aberg JA, et al. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2014;58(1):1–10.

    Article  Google Scholar 

  88. Kojic EM, et al. Human papillomavirus infection and cytologic abnormalities of the anus and cervix among HIV-infected women in the study to understand the natural history of HIV/AIDS in the era of effective therapy (the SUN study). Sex Transm Dis. 2011;38(4):253–9.

    Google Scholar 

  89. Piketty C, et al. High prevalence of anal human papillomavirus infection and anal cancer precursors among HIV-infected persons in the absence of anal intercourse. Ann Intern Med. 2003;138(6):453–9.

    Article  Google Scholar 

  90. Robison K, et al. Anal cytology and human papillomavirus genotyping in women with a history of lower genital tract neoplasia compared with low-risk women. Obstet Gynecol. 2015;126(6):1294–300.

    Article  Google Scholar 

  91. Schofield AM, et al. A prospective study of anal cancer screening in HIV-positive and negative MSM. AIDS. 2016;30(9):1375–83.

    Article  Google Scholar 

  92. Garland SM, et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med. 2007;356(19):1928–43.

    Article  CAS  Google Scholar 

  93. FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–27.

    Article  Google Scholar 

  94. Paavonen J, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374(9686):301–14.

    Article  CAS  Google Scholar 

  95. Giuliano AR, et al. Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N Engl J Med. 2011;364(5):401–11.

    Article  CAS  Google Scholar 

  96. Palefsky JM, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med. 2011;365(17):1576–85.

    Article  CAS  Google Scholar 

  97. Joura EA, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372(8):711–23.

    Article  CAS  Google Scholar 

  98. Chin-Hong PV, et al. Age-specific prevalence of anal human papillomavirus infection in HIV-negative sexually active men who have sex with men: the EXPLORE study. J Infect Dis. 2004;190(12):2070–6.

    Article  Google Scholar 

  99. Meites E, et al. Human papillomavirus vaccination for adults: updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2019;68(32):698–702.

    Article  Google Scholar 

  100. Wheaton AG, et al. Employment and activity limitations among adults with chronic obstructive pulmonary disease – United States, 2013. MMWR Morb Mortal Wkly Rep. 2015;64(11):289–95.

    Google Scholar 

  101. Meites E, Kempe A, Markowitz LE. Use of a 2-dose schedule for human papillomavirus vaccination – updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2016;65(49):1405–8.

    Article  Google Scholar 

  102. FDA. FDA approves expanded use of Gardasil 9 to include invidivudals 27 through 45 years old (press release). 2018. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-expanded-use-gardasil-9-include-individuals-27-through-45-years-old

  103. Luna J, et al. Long-term follow-up observation of the safety, immunogenicity, and effectiveness of Gardasil in adult women. PLoS One. 2013;8(12):e83431.

    Article  CAS  Google Scholar 

  104. Munoz N, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24–45 years: a randomised, double-blind trial. Lancet. 2009;373(9679):1949–57.

    Article  CAS  Google Scholar 

  105. Liu G, et al. Seroprevalence of 9 human papillomavirus types in the United States, 2005–2006. J Infect Dis. 2016;213(2):191–8.

    Article  Google Scholar 

  106. Carter JJ, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis. 2000;181(6):1911–9.

    Article  CAS  Google Scholar 

  107. Edelstein ZR, et al. Serum antibody response following genital {alpha}9 human papillomavirus infection in young men. J Infect Dis. 2011;204(2):209–16.

    Article  CAS  Google Scholar 

  108. Kumar D, et al. Immunogenicity of quadrivalent human papillomavirus vaccine in organ transplant recipients. Am J Transplant. 2013;13(9):2411–7.

    Article  CAS  Google Scholar 

  109. Gomez-Lobo V, et al. Immunogenicity of a prophylactic quadrivalent human papillomavirus L1 virus-like particle vaccine in male and female adolescent transplant recipients. Pediatr Transplant. 2014;18(3):310–5.

    Article  CAS  Google Scholar 

  110. Block SL, et al. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics. 2006;118(5):2135–45.

    Article  Google Scholar 

  111. ClinicalTrials.gov (Internet). Gardasil vaccination in post stem cell transplant patients, identifier NCT01092195. Bethesda: National Library of Medicine (US); 2010. Available from: https://clinicaltrials.gov/ct2/show/record/NCT01092195. Cited 17 Nov 2019

    Google Scholar 

  112. ClinicalTrials.gov [Internet]. Gardasil 9 vaccine in preventing HPV infection in patients with hematologic malignancies undergoing donor stem cell transplant, identifier NCT03023631. Bethesda: National Library of Medicine (US); 2017. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03023631

    Google Scholar 

  113. Rubin LG, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58(3):e44–100.

    Article  Google Scholar 

  114. Danziger-Isakov L, Kumar D, AST ID Community of Practice. Vaccination of solid organ transplant candidates and recipients: guidelines from the American society of transplantation infectious diseases community of practice. Clin Transpl. 2019;33(9):e13563.

    Article  Google Scholar 

  115. Munoz N, et al. Chapter 1. HPV in the etiology of human cancer. Vaccine. 2006;24(Suppl 3):S3/1–10.

    CAS  Google Scholar 

  116. Kurman RJ, editor. Blaustein’s pathology of the female genital tract. 5th ed. New York: Springer; 2002.

    Google Scholar 

  117. Janicek MF, Averette HE. Cervical cancer: prevention, diagnosis, and therapeutics. CA Cancer J Clin. 2001;51(2):92–114. Quiz 115–8.

    Google Scholar 

  118. Park IU, Palefsky JM. Evaluation and management of anal intraepithelial neoplasia in HIV-negative and HIV-positive men who have sex with men. Curr Infect Dis Rep. 2010;12(2):126–33.

    Article  Google Scholar 

  119. Adolescents, P.o.O.I.i.H.-I.A.a. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health and the HIV Medicine Association of the Infectious Diseases Society of America. 2019. Available from: http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. Cited 12 May 2019.

  120. Saslow D, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. J Low Genit Tract Dis. 2012;16(3):175–204.

    Article  Google Scholar 

  121. Committee on Practice Bulletins – Gynecology. Practice bulletin no. 168: cervical cancer screening and prevention. Obstet Gynecol. 2016;128(4):e111–30.

    Article  Google Scholar 

  122. Huh WK, et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. Obstet Gynecol. 2015;125(2):330–7.

    Article  Google Scholar 

  123. US Preventive Services Task Force, et al. Screening for cervical cancer: US preventive services task force recommendation statement. JAMA. 2018;320(7):674–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Chin-Hong .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brickman, C., Chin-Hong, P. (2020). Challenges of Human Papillomavirus Infection in Solid Organ and Hematopoietic Stem Cell Transplant Recipients. In: Morris, M.I., Kotton, C.N., Wolfe, C. (eds) Emerging Transplant Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-01751-4_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01751-4_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01751-4

  • Online ISBN: 978-3-030-01751-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics