Skip to main content

Quantitative Analysis of Gold Nano-aggregates by Combining Electron and Probe Microscopy Techniques

  • Conference paper
  • First Online:
Toward a Science Campus in Milan (CDIP 2017)

Included in the following conference series:

Abstract

The structural and functional properties of nanostructured systems fabricated by the bottom-up assembling of clusters and nanoparticles depend upon the size and shape distribution of the building blocks. Moreover, it is well known that the size and the shape of nano-aggregates can influence toxicity or biological responses. Consequently, analytical techniques able to characterize nano-aggregates size distribution and shape are very important technological tools. This paper is the first step in the development of a quantitative approach combining electron and probe microscopy techniques for measuring the heights and lateral dimensions of primeval incident clusters and nano-aggregates on the substrate. In particular, we have analyzed samples of gold clusters deposited by a supersonic beam on silicon substrates for different deposition time in order to describe the first stage of growth of gold cluster-assembled thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Huttel, Gas-Phase Synthesis of Nanoparticles (Wiley, 2017)

    Google Scholar 

  2. K. Wegner, P. Piseri, H.V. Tafreshi, P. Milani, J. Phys. Appl. Phys. 39, R439 (2006)

    Article  ADS  Google Scholar 

  3. P. Grammatikopoulos, S. Steinhauer, J. Vernieres, V. Singh, M. Sowwan, Adv. Phys. X 1, 81 (2016)

    Google Scholar 

  4. C. Binns, Surf. Sci. Rep. 44, 1 (2001)

    Article  ADS  Google Scholar 

  5. A. Podestà, F. Borghi, M. Indrieri, S. Bovio, C. Piazzoni, P. Milani, J. Appl. Phys. 118, 234309 (2015)

    Article  ADS  Google Scholar 

  6. F. Borghi, PhD thesis, Università degli Studi di Milano (2015)

    Google Scholar 

  7. M.A.C. Potenza, Ž. Krpetić, T. Sanvito, Q. Cai, M. Monopoli, J.M. de Araújo, C. Cella, L. Boselli, V. Castagnola, P. Milani, K.A. Dawson, Nanoscale 9, 2778 (2017)

    Google Scholar 

  8. L. Chen, C.L. Cheung, P.D. Ashby, C.M. Lieber, Nano Lett. 4, 1725 (2004)

    Article  ADS  Google Scholar 

  9. L. Chen, X. Yu, D. Wang, Ultramicroscopy 107, 275 (2007)

    Article  Google Scholar 

  10. Y. Ebenstein, E. Nahum, U. Banin, Nano Lett. 2, 945 (2002)

    Article  ADS  Google Scholar 

  11. J.S. Villarrubia, Surf. Sci. 321, 287 (1994)

    Article  ADS  Google Scholar 

  12. P. Nagy, G.I. Márk, E. Balázs, Microbeam Nanobeam Anaysis (Springer, Vienna, 1996), pp. 425–433

    Google Scholar 

  13. H. Itoh, T. Fujimoto, S. Ichimura, Rev. Sci. Instrum. 77, 103704 (2006)

    Article  ADS  Google Scholar 

  14. R. Reichelt, Microscience (Springer, New York, NY, 2007), pp. 133–272

    Google Scholar 

  15. A. San, Paulo and R. García. Biophys. J. 78, 1599 (2000)

    Article  Google Scholar 

  16. C. Möller, M. Allen, V. Elings, A. Engel, D.J. Müller, Biophys. J. 77, 1150 (1999)

    Article  ADS  Google Scholar 

  17. E. Barborini, P. Piseri, P. Milani, J. Phys. D Appl. Phys. 32, L105 (1999)

    Article  ADS  Google Scholar 

  18. H.V. Tafreshi, P. Piseri, G. Benedek, P. Milani, J. Nanosci. Nanotechnol. 6, 1140 (2006)

    Article  Google Scholar 

  19. H.V. Tafreshi, G. Benedek, P. Piseri, S. Vinati, E. Barborini, P. Milani, Aerosol Sci. Technol. 36, 593 (2002)

    Article  ADS  Google Scholar 

  20. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)

    Article  ADS  Google Scholar 

  21. N. Otsu, I.E.E.E. Trans, Syst. Man Cybern. 9, 62 (1979)

    Article  Google Scholar 

  22. H. Yuen, J. Princen, J. Illingworth, J. Kittler, Image Vis. Comput. 8, 71 (1990)

    Article  Google Scholar 

  23. E. Limpert, Stahel Werner A., and M. Abbt. Bioscience 51, 341 (2001)

    Article  Google Scholar 

  24. E. Barborini, I.N. Kholmanov, A.M. Conti, P. Piseri, S. Vinati, P. Milani, C. Ducati, Eur. Phys. J. At. Mol. Opt. Phys. 24, 277 (2003)

    Google Scholar 

Download references

Acknowledgements

Prof. Michele Perego and Dr. Fabio Zanenga from the MDM Laboratory, IMM-CNR (Via Olivetti 2, 20864, Agrate Brianza, Italy), are gratefully acknowledged for the SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Borghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borghi, F., Mirigliano, M., Milani, P., Podestà, A. (2018). Quantitative Analysis of Gold Nano-aggregates by Combining Electron and Probe Microscopy Techniques. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_7

Download citation

Publish with us

Policies and ethics