Skip to main content

Geometric Flow Equations

  • Chapter
  • First Online:
Geometric Flows and the Geometry of Space-time

Abstract

In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function like the mean curvature or Gauß curvature. In three lectures, we address

  • hypersurfaces, principal curvatures and evolution equations for geometric quantities like the metric and the second fundamental form.

  • the convergence of convex hypersurfaces to round points. Here, we will also show some computer algebra calculations.

  • the evolution of graphical hypersurfaces under mean curvature flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Andrews, Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Differ. Equ. 2(2), 151–171 (1994)

    Article  MathSciNet  Google Scholar 

  2. B. Andrews, Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138(1), 151–161 (1999)

    Article  MathSciNet  Google Scholar 

  3. B. Andrews, P. Guan, L. Ni, Flow by powers of the Gauss curvature. Adv. Math. 299, 174–201 (2016)

    Article  MathSciNet  Google Scholar 

  4. S. Brendle, K. Choi, P. Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature. Acta Math. 219, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  5. Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    Article  MathSciNet  Google Scholar 

  6. B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature. J. Differ. Geom. 22(1), 117–138 (1985)

    Article  Google Scholar 

  7. J. Clutterbuck, Parabolic equations with continuous initial data (2004). arXiv:math.AP/0504455

    Google Scholar 

  8. J. Clutterbuck, O.C. Schnürer, F. Schulze, Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 29(3), 281–293 (2007)

    Article  MathSciNet  Google Scholar 

  9. T.H. Colding, W.P. Minicozzi II, Sharp estimates for mean curvature flow of graphs. J. Reine Angew. Math. 574, 187–195 (2004)

    MathSciNet  MATH  Google Scholar 

  10. K. Ecker, Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and Their Applications, vol. 57 (Birkhäuser Boston Inc., Boston, 2004)

    Chapter  Google Scholar 

  11. K. Ecker, G. Huisken, Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105(3), 547–569 (1991)

    Article  MathSciNet  Google Scholar 

  12. L.C. Evans, J. Spruck, Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991)

    Article  MathSciNet  Google Scholar 

  13. M.E. Feighn, Separation properties of codimension-1 immersions. Topology 27(3), 319–321 (1988)

    Article  MathSciNet  Google Scholar 

  14. W.J. Firey, Shapes of worn stones. Mathematika 21, 1–11 (1974)

    Article  MathSciNet  Google Scholar 

  15. M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)

    Article  MathSciNet  Google Scholar 

  16. C. Gerhardt, Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)

    Article  MathSciNet  Google Scholar 

  17. C. Gerhardt, Curvature Problems. Series in Geometry and Topology, vol. 39 (International Press, Somerville, 2006)

    Google Scholar 

  18. M.A. Grayson, The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26(2), 285–314 (1987)

    Article  MathSciNet  Google Scholar 

  19. R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  20. G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  Google Scholar 

  21. G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    Article  MathSciNet  Google Scholar 

  22. G. Huisken, A. Polden, Geometric evolution equations for hypersurfaces, in Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, vol. 1713 (Springer, Berlin, 1999), pp. 45–84

    Google Scholar 

  23. J.A. McCoy, The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003)

    Article  MathSciNet  Google Scholar 

  24. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer, New York, 1984). Corrected reprint of the 1967 original

    Book  Google Scholar 

  25. M. Sáez Trumper, O.C. Schnürer, Mean curvature flow without singularities. J. Differ. Geom. 97(3), 545–570 (2014)

    Article  MathSciNet  Google Scholar 

  26. O.C. Schnürer, The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds. Math. Z. 242(1), 159–181 (2002)

    Article  MathSciNet  Google Scholar 

  27. O.C. Schnürer, Surfaces contracting with speed |A|2. J. Differ. Geom. 71(3), 347–363 (2005)

    Article  MathSciNet  Google Scholar 

  28. O.C. Schnürer, Surfaces expanding by the inverse Gauß curvature flow. J. Reine Angew. Math. 600, 117–134 (2006)

    MathSciNet  MATH  Google Scholar 

  29. N. Stavrou, Selfsimilar solutions to the mean curvature flow. J. Reine Angew. Math. 499, 189–198 (1998)

    MathSciNet  MATH  Google Scholar 

  30. C. Sturm, Mémoire sur la résolution des équations numeriques. Bull. Sci. Math. Ferussac 11, 419–422 (1829)

    Google Scholar 

  31. K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature. Commun. Pure Appl. Math. 38(6), 867–882 (1985)

    Article  MathSciNet  Google Scholar 

  32. J.I.E. Urbas, An expansion of convex hypersurfaces. J. Differ. Geom. 33(1), 91–125 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver C. Schnürer .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Parabolic Maximum Principles

The following maximum principle is fairly standard. For non-compact, strict or other maximum principles, we refer to [11] or [24], respectively.

We will use C 2;1 for the space of functions that are two times continuously differentiable with respect to the space variables and once continuously differentiable with respect to the time variable.

Theorem 18 (Weak Parabolic Maximum Principle)

Let \(\varOmega \subset {\mathbb {R}}^n\) be open and bounded and T > 0. Let a ij , b i ∈ L (Ω × [0, T]). Let a ij be strictly elliptic, i.e. a ij(x, t) > 0 in the sense of matrices. Let \(u\in C^{2;1}(\varOmega \times [0,T))\times C^0\left (\overline \varOmega \times [0,T]\right )\) fulfill

$$\displaystyle \begin{aligned}\dot u\le a^{ij}u_{ij}+b^iu_i\quad \mathit{\text{in }}\varOmega\times(0,T).\end{aligned}$$

Then we get for (x, t) ∈ Ω × (0, T)

$$\displaystyle \begin{aligned}u(x,t)\le\sup\limits_{\mathscr P\left(\varOmega\times(0,T)\right)} u,\end{aligned}$$

where \(\mathscr P\left (\varOmega \times (0,T)\right ):=(\varOmega \times \{0\}) \cup (\partial \varOmega \times (0,T))\).

Proof

  1. (i)

    Let us assume first that \(\dot u<a^{ij}u_{ij}+b^iu_i\) in Ω × (0, T). If there exists a point (x 0, t 0) ∈ Ω × (0, T) such that \(u(x_0,t_0)>\sup \limits _{\mathscr P\left (\varOmega \times (0,T)\right )} u\), we find (x 1, t 1) ∈ Ω × (0, T) and t 1 minimal such that u(x 1, t 1) = u(x 0, t 0). At (x 1, t 1), we have \(\dot u\ge 0\), u i = 0 for all 1 ≤ i ≤ n, and u ij ≤ 0 (in the sense of matrices). This, however, is impossible in view of the evolution equation.

  2. (ii)

    Define for 0 < ε the function v := u − εt. It fulfills the differential inequality

    $$\displaystyle \begin{aligned}\dot{\mathrm{v}} =\dot u-{\varepsilon}<\dot u\le a^{ij}u_{ij}+b^iu_i =a^{ij}\mathrm{v}_{ij}+b^i\mathrm{v}_i.\end{aligned}$$

    Hence, by the previous considerations,

    $$\displaystyle \begin{aligned}u(x,t)-{\varepsilon} t=\mathrm{v}(x,t)\le\sup\limits_{\mathscr P(\varOmega\times(0,T))} \mathrm{v} =\sup\limits_{\mathscr P(\varOmega\times(0,T))} u-{\varepsilon} t\end{aligned}$$

    and the result follows as .

There is also a parabolic maximum principle for tensors, see [19, Theorem 9.1]. (See the AMS-Review for a small correction of the proof.)

A tensor N ij depending smoothly on M ij and g ij, involving contractions with the metric, is said to fulfill the null-eigenvector condition, if N ijvivj ≥ 0 for all null-eigenvectors v of M ij.

Theorem 19

Let (M ij)i,j be a tensor, defined on a closed Riemannian manifold (M, g(t)), fulfilling

$$\displaystyle \begin{aligned}{\frac{\partial}{\partial t}} M_{ij}=\varDelta M_{ij}+b^k\nabla_kM_{ij}+N_{ij}\end{aligned}$$

on a time interval [0, T), where b is a smooth vector field and N ij fulfills the null-eigenvector condition. If M ij ≥ 0 at t = 0, then M ij ≥ 0 for 0 ≤ t < T.

Appendix 2: Some Linear Algebra

Lemma 14

We have

$$\displaystyle \begin{aligned}\frac\partial{\partial a_{ij}}\det(a_{rs}) =\det(a_{rs})a^{ji},\end{aligned}$$

if a ij is invertible with inverse a ij , i.e. if \(a^{ij}a_{jk}=\delta ^i_k\).

Proof

It suffices to prove that the claimed equality holds when we multiply it with a ik and sum over i. Hence, we have to show that

$$\displaystyle \begin{aligned}\frac\partial{\partial a_{ij}} \det(a_{rs})a_{ik}=\det(a_{rs})\delta^j_k.\end{aligned}$$

We get

$$\displaystyle \begin{aligned}\frac\partial{\partial a_{ij}}\det(a_{rs})= \det\begin{pmatrix} a_{1\,1} & \hdots & a_{1\,j-1} & 0 & a_{1\,j+1} & \hdots & a_{1\,n}\\ \vdots & & \vdots & \vdots & \vdots & & \vdots\\ a_{i-1\,1} & \hdots & a_{i-1\,j-1} & 0 & a_{i-1\,j+1} & \hdots & a_{i-1\,n}\\ 0 & \hdots & 0 & 1 & 0 & \hdots & 0\\ a_{i+1\,1} & \hdots & a_{i+1\,j-1} & 0 & a_{i+1\,j+1} & \hdots & a_{i+1\,n}\\ \vdots & & \vdots & \vdots & \vdots & & \vdots\\ a_{n\,1} & \hdots & a_{n\,j-1} & 0 & a_{n\,j+1} & \hdots & a_{n\,n}\\ \end{pmatrix}.\end{aligned}$$

and thus

$$\displaystyle \begin{aligned} \frac\partial{\partial a_{ij}}\det(a_{rs})\cdot a_{ik}=& \det\begin{pmatrix} 0&\hdots&0&a_{1\,k}&0&\hdots&0\\ a_{2\,1}&\hdots&a_{2\,j-1}&0&a_{2\,j+1}&\hdots&a_{2\,n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n\,1}&\hdots&a_{n\,j-1}&0&a_{n\,j+1}&\hdots&a_{n\,n} \end{pmatrix}\\ &+\det\begin{pmatrix} a_{1\,1}&\hdots&a_{1\,j-1}&0&a_{1\,j+1}&\hdots&a_{1\,n}\\ 0&\hdots&0&a_{2\,k}&0&\hdots&0\\ a_{3\,1}&\hdots&a_{3\,j-1}&0&a_{3\,j+1}&\hdots&a_{3\,n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n\,1}&\hdots&a_{n\,j-1}&0&a_{n\,j+1}&\hdots&a_{n\,n} \end{pmatrix}\\ &+\hdots\\ =&\det\begin{pmatrix} a_{1\,1}&\hdots&a_{1\,j-1}&a_{1\,k}&a_{1\,j+1}&\hdots&a_{1\,n}\\ a_{2\,1}&\hdots&a_{2\,j-1}&0&a_{2\,j+1}&\hdots&a_{2\,n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n\,1}&\hdots&a_{n\,j-1}&0&a_{n\,j+1}&\hdots&a_{n\,n} \end{pmatrix}\\ &+\det\begin{pmatrix} a_{1\,1}&\hdots&a_{1\,j-1}&0&a_{1\,j+1}&\hdots&a_{1\,n}\\ a_{2\,1}&\hdots&a_{2\,j-1}&a_{2\,k}&a_{2\,j+1}&\hdots&a_{2\,n}\\ a_{3\,1}&\hdots&a_{3\,j-1}&0&a_{3\,j+1}&\hdots&a_{3\,n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n\,1}&\hdots&a_{n\,j-1}&0&a_{n\,j+1}&\hdots&a_{n\,n} \end{pmatrix}\\ &+\hdots\\ =&\det\begin{pmatrix} a_{1\,1}&\hdots&a_{1\,j-1}&a_{1\,k}&a_{1\,j+1}&\hdots&a_{1\,n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n\,1}&\hdots&a_{n\,j-1}&a_{n\,k}&a_{n\,j+1}&\hdots&a_{n\,n} \end{pmatrix}\\ =&\delta^j_k\det(a_{rs}). \end{aligned} $$

Lemma 15

Let a ij(t) be differentiable in t with inverse a ij(t). Then

$$\displaystyle \begin{aligned}{\frac{d}{dt}} a^{ij}=-a^{ik}a^{lj}{\frac{d}{dt}} a_{kl}.\end{aligned}$$

Proof

We have

$$\displaystyle \begin{aligned}a^{ik}a_{kj}=\delta^i_j.\end{aligned}$$

There exists \(\tilde a^{ij}\) such that

$$\displaystyle \begin{aligned}a_{ik}\tilde a^{kj}=\delta^j_i.\end{aligned}$$

Then \(a^{ij}=\tilde a^{ij}\), as

$$\displaystyle \begin{aligned}a^{ij}=a^{ik}\delta^j_k=a^{ik}\left(a_{kl}\tilde a^{lj}\right) =\left(a^{ik}a_{kl}\right)\tilde a^{lj}=\tilde a^{ij}.\end{aligned}$$

We differentiate and obtain

$$\displaystyle \begin{aligned}0={\frac{d}{dt}}\delta^i_j={\frac{d}{dt}}\left(a^{ik}a_{kj}\right) ={\frac{d}{dt}} a^{ik}a_{kj}+a^{ik}{\frac{d}{dt}} a_{kj}.\end{aligned}$$

Hence

$$\displaystyle \begin{aligned}{\frac{d}{dt}} a^{il}={\frac{d}{dt}} a^{ik}\delta^l_k ={\frac{d}{dt}} a^{ik}a_{kj}a^{jl} =-a^{ik}{\frac{d}{dt}} a_{kj}a^{jl}.\end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schnürer, O.C. (2018). Geometric Flow Equations. In: Cortés, V., Kröncke, K., Louis, J. (eds) Geometric Flows and the Geometry of Space-time. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-01126-0_2

Download citation

Publish with us

Policies and ethics