Skip to main content

Mechanisms for Microvascular Cell Activation: Pancreatic Digestive Enzyme Derived Inflammatory Mediators in Shock

  • Chapter
Molecular Basis for Microcirculatory Disorders

Abstract

A key feature that serves to control the behavior of the microcirculation is the state of cell activation (64). In healthy individuals without cardiovascular complications or risk factors, leukocytes, platelets, endothelial cells or mast cells are in a low state of activation. There are low numbers of leukocytes (neutrophils, monocytes, lymphocytes) adhering to microvascular endothelium, no platelet adhesion or aggregation, and the endothelial permeability is low. The arterioles exhibit strong autoregulatory control, the capillary perfusion is extraordinarily stable and there is little evidence for blood cell swelling or plasma coagulation. This is the state of the microcirculation without any complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. Abello PA, Buchman TG, Bulkley GB (1994) Shock and Multiple Organ Failure. Adv Exp Med. Biol. 366: 253–68.

    Google Scholar 

  2. Barroso-Aranda J, Chavez-Chavez R, Mathison JC, Suematsu M, Schmid-Schönbein GW (1994) Circulating Neutrophil Kinetics During Tolerance in Haemorrhagic Shock Using Bacterial Lipopolysaccharide. Am. J. Physiol. H415–21.

    Google Scholar 

  3. Barroso-Aranda J, Chavez-Chavez R, Schmid-Schönbein GW (1992) Spontaneous Neutrophil Activation and the Outcome of Haemorrhagic Shock in Rabbits. Circ. Shock. 36: 185–90.

    Google Scholar 

  4. Barroso-Aranda J, Schmid-Schönbein GW (1989) Transformation of Neutrophils as Indicator of Irreversibility in Haemorrhagic Shock. Am. J. Physiol. H846–52.

    Google Scholar 

  5. Barroso-Aranda J, Zweifach BW, Mathison JC, Schmid-Schönbein GW (1995) Neutrophil Activation, Tumor Necrosis Factor, and Survival After Endotoxic and Haemorrhagic Shock. J. Cardiovasc. Pharmacol. S23–9.

    Google Scholar 

  6. Barry MC, Condron CM, Watson RW, Redmond HP, El Jack M, Watson RG, Bouchier Hayes D (1997) Pre-operative Neutrophil and Monocyte Activation State Predicts Post-operative Neutrophil and Monocyte Function. European Journal of Surgery. 163: 739–45.

    PubMed  CAS  Google Scholar 

  7. Barry MC, Wang JH, Kelly CJ, Sheehan SJ, Redmond HP, Bouchier-Hayes DJ (1997) Plasma Factors Augment Neutrophil and Endothelial Cell Activation During Aortic Surgery. European Journal of Vascular and Endovascular Surgery. 13: 381–7.

    Article  PubMed  CAS  Google Scholar 

  8. Barry MC, Wang JH, Kelly CJ, Sheehan SJ, Redmond HP, Bouchier-Hayes DJ (1997) Plasma Factors Augment Neutrophil and Endothelial Cell Activation During Aortic Surgery. Eur. J. Vasc. Endovasc. Surg. 13: 381–7.

    Google Scholar 

  9. Baskurt OK, Meiselman HJ (1998) Activated Polymorphonuclear Leukocytes Affect Red Blood Cell Aggregability. Journal of Leukocyte Biology. 63: 89–93.

    PubMed  CAS  Google Scholar 

  10. Baskurt OK, Temiz A, Meiselman HJ (1998) Effect of Superoxide Anions on Red Blood Cell Rheologic Properties. Free Radical Biology and Medicine. 24: 102–10.

    Article  PubMed  CAS  Google Scholar 

  11. Buckley GB (1989) Mediators of Splanchnic Organ Injury: Overview and Perspective. Chapter 16. In: Splanchnic Arterial Occlusion Shock. ( Marston A, Buckley GB, Fiddian-Green RG, Haglund UH, eds.) The C. V. Mosby Company. St. Louis. 183–91.

    Google Scholar 

  12. Bullard DC, Qin L, Lorenzo I, Quinlin WM, Doyle NA, Bosse R, Vestweber D, Doerschuk CM, Beaudet AL (1995) P-selectin/ICAM-1 Double Mutant Mice: Acute Emigration of Neutrophils Into the Peritoneum is Completely Absent but is Normal Into Pulmonary Alveoli [see comments]. Journal of Clinical Investigation. 95: 1782–8.

    Google Scholar 

  13. Carden DL, Young JA, Granger DN (1993) Pulmonary Microvascular Injury After Intestinal Ischemia-reperfusion: Role of P-selectin. J. Appl. Physiol. 75: 2529–34.

    Google Scholar 

  14. Chang RRK, Chien NTY, Chen C-H, Jan K-M, Schmid-Schönbein GW, Chien S (1992) Spontaneous Activation of Circulating Granulocytes in Patients with Acute Myocardial and Cerebral Diseases. Biorheology. 29: 549–61.

    PubMed  CAS  Google Scholar 

  15. Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G (1992) A mechanism for the Antiinflammatory Effects of Corticosteroids: the Glucocorticoid Receptor Regulates Leukocyte Adhesion to Endothelial Cells and Expression of Endothelial-leukocyte Adhesion Molecule 1 and Intercellular Adhesion Molecule 1. Proceedings of the National Academy of Sciences of the United States of America. 89: 9991–5.

    Article  PubMed  CAS  Google Scholar 

  16. Cronstein BN, Levin RI, Belanoff J, Weissmann G, Hirschhorn R (1986) Adenosine: an Endogenous Inhibitor of Neutrophil-mediated Injury to Endothelial cells. J. Clin. Invest. 78: 760–70.

    Google Scholar 

  17. Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, Luis de la Pompa J, Elia A, Wakeham A, Karan-Tamir B, Muller WA, Senaldi G, Zukowski MM, Mak TW (1999) Genetic Evidence for Functional Redundancy of Platelet/endothelial Cell Adhesion Molecule-1 (PECAM-1): CD31-deficient Mice Reveal PECAM-1-dependent and PECAM-1-independent Functions. Journal of Immunology. 162: 3022–30.

    CAS  Google Scholar 

  18. Duran WN, Dillon PK (1990) Acute Microcirculatory Effects of Platelet-activating Factor. Journal of Lipid Mediators. 2 Suppl: S215–27.

    Google Scholar 

  19. Elgebaly SA, Masetti P, Allam M, Forouhar F (1989) Cardiac Derived Neutrophil Chemotactic Factors; Preliminary Biochemical Characterization. Journal of Molecular and Cellular Cardiology. 21: 585–93.

    Google Scholar 

  20. Elneihoum AM, Falke P, Axelsson L, Lundberg E, Lindgarde F, Ohlsson K (1996) Leukocyte Activation Detected by Increased Plasma Levels of Inflammatory Mediators in Patients with Ischemic Cerebrovascular Diseases. Stroke. 27: 1734–8.

    Article  PubMed  CAS  Google Scholar 

  21. Ember JA, Hugh TE (1997) Complement Factors and their Receptors. Immunopharmacology. 38: 3–15.

    Article  PubMed  CAS  Google Scholar 

  22. Emerit I, Fabiani JN, Levy A, Ponzio O, Conti M, Brasme B, Bienvenu P, Hatmi M (1995) Plasma from Patients Exposed to Ischemia Reperfusion Contains Clastogenic Factors and Stimulates the Chemiluminescence Response of Normal Leukocytes. Free Radic. Biol. Med. 19: 405–15.

    Google Scholar 

  23. Emerit I, Fabiani JN, Levy A, Ponzio O, Conti M, Brasme B, Bienvenu P, Hatmi M (1995) Plasma from Patients Exposed to Ischemia Reperfusion Contains Clastogenic Factors and Stimulates the Chemiluminescence Response of Normal Leukocytes. Free Radical Biology and Medicine. 19: 40515.

    Article  Google Scholar 

  24. Endo S, Inada K, Yamada Y, Takakuwa T, Kasai T, Nakae H, Yoshida M, Ceska M (1994) Plasma Endotoxin and Cytokine Concentrations in Patients with Haemorrhagic Shock. Critical Care Medicine. 22: 949–55.

    Article  PubMed  CAS  Google Scholar 

  25. Farsky SP, Sannomiya P, Garcia-Leme J (1995) Secreted Glucocorticoids Regulate Leukocyte-endothelial Interactions in Inflammation. A Direct Vital Microscopic Study. Journal of Leukocyte Biology. 57: 379–86.

    Google Scholar 

  26. Ferguson WW, Glenn TM, Lefer AM (1972) Mechanisms of Production of Circulatory Shock Factors in Isolated Perfused Pancreas. Am. J. Physiol. 222: 450–7.

    Google Scholar 

  27. Foëx BA, Quinn JV, Little RA, Shelly MP, Slotman GJ (1997) Differences in Eicosanoid and Cytokine Production Between Injury/hemorrhage and Bacteremic Shock in the Pig. Shock. 8: 276–83.

    Article  PubMed  Google Scholar 

  28. Frank E (1968) Traumatic and Toxic Factors in Shock. Chapter 12. In: Microcirculation as Related to Shock. ( Shepro D and Fulton GP, eds.) Academic Press. New York. 181–96.

    Chapter  Google Scholar 

  29. Gawlowski DM, Benoit JN, Granger HJ (1993) Microvascular Pressure and Albumin Extravasation After Leukocyte Activation in Hamster Cheek Pouch. American Journal of Physiology. 264: H541–6.

    PubMed  CAS  Google Scholar 

  30. Gimbrone MA, Jr., Nagel T, Topper IN (1997) Biomechanical Activation: an Emerging Paradigm in Endothelial Adhesion Biology. Journal of Clinical Investigation. 99: 1809–13.

    Article  PubMed  CAS  Google Scholar 

  31. Glenn TM, Herlihy BL, Ferfuson WW, Lefer AM (1972) Protective Effect of Pancreatic Duct Ligation in Splanchnic Ischemia Shock. Am. J. Physiol. 222: 1278–84.

    Google Scholar 

  32. Goldsmith HL, Spain S (1984) Margination of Leukocytes in Blood Flow Through Small Tubes. Microvasc. Res. 27: 204–222.

    Google Scholar 

  33. Granger DN, Kubes P (1994) The Microcirculation and Inflammation: Modulation of Leukocyte-endothelial Cell Adhesion. Journal of Leukocyte Biology. 55: 662–75.

    Google Scholar 

  34. Granger ND, Schmid-Schönbein GW (1995) Physiology and Pathophysiology of Leukocyte Adhesion. Oxford University Press. New York.

    Google Scholar 

  35. Grau AJ, Berger E, Sung K-LP, Schmid-Schönbein GW (1992) Granulocyte Adhesion, Deformability, and Superoxide Formation in Acute Stroke. Stroke. 22: 33–9.

    Google Scholar 

  36. Gruber HE, Hoffer ME, McAllister DR, Laikind PK, Lane TA, Schmid-Schönbein GW, Engler RL (1989) Increased Adenosine Concentration in Blood from Ischenic Myocardium by AICA Riboside: Effects on flow, granulocytes, and injury. Circulation. 80: 1400–11.

    Google Scholar 

  37. Gute DC, Ishida T, Yarimizu K, Korthuis RJ (1998) Inflammatory Responses to Ischemia and Reperfusion in Skeletal Muscle. Molecular and Cellular Biochemistry. 179: 169–87.

    Article  PubMed  CAS  Google Scholar 

  38. Hammerschmidt DE, Harris PD, Wayland JH, Craddock PR, Jacob HS (1981) Complement-induced Granulocyte Aggregation in vivo. Am. J. Path. 102: 146–50.

    Google Scholar 

  39. Harris AG, Skalak TC, Hatchell DL (1994) Leukocyte-capillary Plugging and Network Resistance are Increased in Skeletal Muscle of Rats with Streptozotocin-induced Hyperglycemia. International Journal of Microcirculation: Clinical and Experimental. 14: 159–66.

    Google Scholar 

  40. Hoffmann TF, Leiderer R, Waldner H, Arbogast S, Messmer K (1995) Ischemia Reperfusion of the Pancreas: a New in vivo Model for Acute Pancreatitis in Rats. Research in Experimental Medicine. 195: 125–44.

    Article  PubMed  CAS  Google Scholar 

  41. House SD, Lipowsy HH (1987) Leukocyte-endothelium Adhesion: Microhemodynamics in Mesentery of the Cat. Microvasc. Res. 34: 363–79.

    Google Scholar 

  42. Hoyt DB, Junger WG, Loomis WH, Liu FC (1994) Effects of Trauma on Immune Cell Function: Impairment of Intracellular Calcium Signalling. Shock. 2: 23–8.

    Google Scholar 

  43. Huang TS, Hurd RE, Chopra IJ, Stevens P, Solomon DH, Young LS (1984) Inhibition of Phagocytosis and Chemiluminescence in Human Leukocytes by a Lipid Soluble Factor in Normal Tissues. Infect Immun. 46: 544–51.

    PubMed  CAS  Google Scholar 

  44. Jia GQ, Gonzalo JA, Hidalgo A, Wagner D, Cybulsky M, Gutierrez-Ramos JC (1999) Selective Eosinophil Transendothelial Migration Triggered by Eotaxin via Modulation of Mac-1/ICAM-1 and VLA-4/VCAM-1 interactions. International Immunology. 11: 1–10.

    Article  PubMed  CAS  Google Scholar 

  45. Kistler EB (1998) Humoral Mechanisms of Cellular Activation in Ischemic Shock. University of California San Diego, Ph. D. Thesis.

    Google Scholar 

  46. Kistler EB, Hugli TE, Schmid-Schönbein GW (2000) The Pancreas as a Source of Cardiovascular Cell Activating Factors. Microcirculation. 7: 183–92.

    PubMed  CAS  Google Scholar 

  47. Kistler EB, Lefer AM, DeLano FA, Zweifach BW, Schmid-Schönbein GW (1996) Splanchnic Arterial Occlusion Shock and Plasma Activation in the Rat. International Journal of Microcirculation. 16, Supplement 1: 202.

    Google Scholar 

  48. Kistler EB, Lefer AM, Hugh TE, Schmid-Schönbein GW (2000) Plasma Activation During Splanchnic Arterial Occlusion shock. Shock. 14: 30–4.

    Article  PubMed  CAS  Google Scholar 

  49. Knowles RG, Salter M, Brooks SL, Moncada S (1990) Anti-inflammatory Glucocorticoids Inhibit the Induction by Endotoxin of Nitric Oxide Synthase in the Lung, Liver and Aorta of the Rat. Biochemical and Biophysical Research Communications. 172: 1042–8.

    Google Scholar 

  50. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: An Endogenous Modulation of Leukocyte Adhesion. Proc. Natl. Acad. Sci. USA. 88: 4651–5.

    Google Scholar 

  51. Kusterer K, Poschmann T, Friedemann A, Enghofer M, Zendler S, Usadel KH (1993) Arterial Constriction, Ischemia-reperfusion, and Leukocyte Adherence in Acute Pancreatitis. Am. J. Physiol. G165–71.

    Google Scholar 

  52. Lacy F, Kailasam MT, O’Connor DT, Schmid-Schönbein GW, Parmer RJ (2000) Plasma Hydrogen Peroxide Production in Human Essential Hypertension: Role of Heredity, Gender, and Ethnicity. Hypertension. 36: 878–84.

    Google Scholar 

  53. Lee J, Schmid-Schönbein GW (1995) Biomechanics of Muscle Capillaries: Hemodynamic Resistance, Endothelial Distensibility, and Pseudopod Formation. Ann. Biomed. Eng. 23: 226–46.

    Google Scholar 

  54. Lefer AM (1977) Production of a Myocardial Depressant Factor in Circulatory Shock. In: Current Topics in Critical Care Medicine. ( Shoemaker WC, Taveres BM, eds.) S. Karger. Basel, Switzerland. 80–93.

    Google Scholar 

  55. Leffler JN, Litvin Y, Barenholz Y, Lefer AM (1973) Proteolysis in Formation of a Myocardial Depressant Factor during Shock. Am. J. Physiol. 224: 824–31.

    Google Scholar 

  56. Lefkowitz DL, Mills K, Lefkowitz SS, Bollen A, Moguilevsky N (1995) Neutrophil-macrophage Interaction: a Paradigm for Chronic Inflammation. Medical Hypotheses. 44: 58–62.

    Article  PubMed  CAS  Google Scholar 

  57. Liaw YS, Yu CJ, Wu HD, Yang PC (1997) Comparison of Inflammatory Cytokine Concentration and Physiologic Parameters in Septic Shock. Journal of the Formosan Medical Association. 96: 685–90.

    PubMed  CAS  Google Scholar 

  58. Lindahl B, Toss H, Siegbahn A, Venge P, Wallentin L (2000) Markers of Myocardial Damage and Inflammation in Relation to Long-term Mortality in Unstable Coronary Artery Disease. FRISC Study Group. Fragmin during Instability in Coronary Artery Disease [see comments]. New England Journal of Medicine. 343: 1139–47.

    Google Scholar 

  59. Lindbom L, Hedqvist P, Dahlén SE, Lindgren JA, Arfors KE (1982) Leukotriene B4 Induces Extravasation and Migration of Polymorphonuclear Leukocytes in vivo. Acta Physiologica Scandinavica. 116: 105–8.

    Article  PubMed  CAS  Google Scholar 

  60. Mac-Gregor RR (1977) Granulocyte Adherence Changes Induced by Hemodialysis, Endotoxin, Epinephrine, and Glucocorticoids. Ann. Int. Med. 86: 35–9.

    PubMed  CAS  Google Scholar 

  61. Mainous MR, Ertel W, Chaudry IH, Deitch EA (1995) The Gut: A Cytokine-generating Organ in Systemic Inflammation? Shock. 4: 193–9.

    Article  PubMed  CAS  Google Scholar 

  62. Marston A (1989) Vascular Occlusion. Chapter 5. In: Splanchnic Arterial Occlusion Shock. ( Marston A, Buckley GB, Fiddian-Green RG, Haglund UH, eds.) The C. V. Mosby Company. St. Louis. 51–71.

    Google Scholar 

  63. Mazzoni MC, Borgstrom P, Intaglietta M, Arfors K-E (1990) Capillary Narrowing in Haemorrhagic Shock is Rectified by Hyperosmotic Saline-dextran Reinfusion. Circ. Shock. 31: 407–18.

    Google Scholar 

  64. Mazzoni MC, Schmid-Schönbein GW (1996) Mechanisms and Consequences of Cell Activation in the Microcirculation. Cardiovascular Research. 32: 709–19.

    PubMed  CAS  Google Scholar 

  65. McCord JM (1987) Oxygen Derived Radicals: a Link Between Reperfusion Injury and Inflammation. Fed. Proceed. 46: 2402–6.

    CAS  Google Scholar 

  66. Menger MD, Bonkhoff H, Vollmar B (1996) Ischemia-reperfusion-induced Pancreatic Microvascular Injury. An Intravital Fluorescence Microscopic Study in Rats [see comments]. Digestive Diseases and Sciences. 41: 823–30.

    Google Scholar 

  67. Messina LM (1990) In vivo assessment of Acute Microvascular Injury after Reperfusion of Ischemic Tibialis Anterior Muscle of the Hamster. Journal of Surgical Research. 48: 615–21.

    Article  PubMed  CAS  Google Scholar 

  68. Mitsuoka H, Kistler EB, Schmid-Schönbein GW (2000) Generation of in vitro Activating Factors in the Ischemic Intestine by Pancreatic Enzymes. Proc. Natl. Acad. Sci. U.S.A. 97: 1772–7.

    Google Scholar 

  69. Mitsuoka H, Schmid-Schönbein GW (2000) Mechanisms for Blockade of in vivo Activator Production in the Ischemic Intestine and Multiorgan Failure. Shock. 14: 522–7.

    Article  PubMed  CAS  Google Scholar 

  70. Moazzam F, DeLano FA, Zweifach BW, Schmid-Schönbein GW (1997) The Leukocyte Response to Fluid Stress [see comments]. Proceedings of the National Academy of Sciences of the United States of America. 94: 5338–43.

    Article  PubMed  CAS  Google Scholar 

  71. Montgomery A, Borgstrom A, Haglund U (1992) Pancreatic Proteases and Intestinal Mucosal Injury after Ischemia and Reperfusion in the Pig. Gastroenterology. 102: 216–22.

    PubMed  CAS  Google Scholar 

  72. Mori O, Yamazaki M, Ohaki Y, Arai Y, Oguro T, Shimizu H, Asano G (2000) Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke like Episodes ( MELAS) with Prominent Degeneration of the Intestinal Wall and Cactus-like Cerebellar Pathology. Acta Neuropathologica. 100: 712–7.

    Google Scholar 

  73. Muller WA (1995) The role of PECAM-1 (CD31) in Leukocyte Emigration: Studies in vitro and in vivo. Journal of Leukocyte Biology. 57: 523–8.

    PubMed  CAS  Google Scholar 

  74. Nishiura H, Shibuya Y, Yamamoto T (1998) S19 Ribosomal Protein Cross-linked Dimer Causes Monocyte-predominant Infiltration by Means of Molecular Mimicry to Complement C5a. Laboratory Investigation. 78: 1615–23.

    PubMed  CAS  Google Scholar 

  75. Nishiura H, Tanase S, Sibuya Y, Nishimura T, Yamamoto T (1999) Determination of the Cross-linked Residues in Homo-dimerization of S19 Ribosomal Protein Concomitant with Exhibition of Monocyte Chemotactic Activity. Laboratory Investigation. 79: 915–23.

    PubMed  CAS  Google Scholar 

  76. Ohashi KL, Tung DK-L, Wilson JM, Zweifach BW, Schmid-Schönbein GW (1996) Transvascular and Interstitial Migration of Neutrophils in Rat Mesentery. Microcirculation. 3: 199–210.

    Article  PubMed  CAS  Google Scholar 

  77. Paterson IS, Smith FC, Tsang GM, Hamer JD, Shearman CP (1993) Reperfusion Plasma Contains a Neutrophil Activator. Annals of Vascular Surgery. 7: 68–75.

    Article  PubMed  CAS  Google Scholar 

  78. Paterson IS, Smith FC, Tsang GM, Hamer JD, Shearman CP (1993) Reperfusion Plasma Contains a Neutrophil Activator. Ann Vasc Surg. 7: 68–75.

    Article  PubMed  CAS  Google Scholar 

  79. Pentikäinen MO, Oörni K, Ala-Korpela M, Kovanen PT (2000) Modified LDL–Trigger of Atherosclerosis and Inflammation in the Arterial Intima. Journal of Internal Medicine. 247: 359–70.

    Article  PubMed  Google Scholar 

  80. Petrasek PF, Lindsay TF, Romaschin AD, Walker PM (1996) Plasma Activation of Neutrophil CD18 after Skeletal Muscle Ischemia: a Potential Mechanism for Late Systemic Injury. American Journal of Physiology. 270: H1515–20.

    PubMed  CAS  Google Scholar 

  81. Petrone WF, English DK, Wong K, McCord JM (1980) Free Radicals and Inflammation: Superoxide-dependent Activation of a Neutrophil Chemotactic Factor in Plasma. Proceedings of the National Academy of Sciences of the United States of America. 77: 1159–63.

    Google Scholar 

  82. Pitzer JE, Del Zoppo GJ, Schmid-Schönbein GW (1996) Neutrophil Activation in Smokers. Biorheology. 33: 45–58.

    Article  PubMed  CAS  Google Scholar 

  83. Reichard SM (1980) RES and Immune Suppression in Traumatic Shock. Advances in Shock Research. 3: 143–51.

    PubMed  CAS  Google Scholar 

  84. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men [published erratum appears in N Engl J Med 1997 Jul 31;337(5):356] [see comments]. New England Journal of Medicine. 336: 9739.

    Google Scholar 

  85. Ritter LS, Wilson DS, Williams SK, Copeland JG, McDonagh PF (1995) Early in Reperfusion Following Myocardial Ischemia, Leukocyte Activation is Necessary for Venular Adhesion but not Capillary Retention. Microcirculation. 2: 315–27.

    Google Scholar 

  86. Ross R (1999) Atherosclerosis–an Inflammatory Disease [see comments]. New England Journal of Medicine. 340: 115–26.

    Article  PubMed  CAS  Google Scholar 

  87. Schmeling DJ, Caty MG, Oldham KT, Guice KS, Hinshaw DB (1989) Evidence for Neutrophil-related Acute Lung Injury after Intestinal Ischemia-reperfusion. Surgery. 106: 195–201; discussion 201–2.

    Google Scholar 

  88. Schröder S, Palinski W, Schmid-Schönbein GW (1991) Activated Monocytes and Granulocytes, Capillary non-perfusion and Neovascularization in Diabetic Retinopathy. Am. J. Pathol. 139: 81100.

    Google Scholar 

  89. Seitz R, Adler G, Koop I, Koop H, Egbring R (1989) A Unique Case of Intravenous Injection of Fungal “Pancreatic” Enzymes Causing Shock and Proteolysis of Haemostatic Proteins. Toxicology. 55: 239–46.

    Article  PubMed  CAS  Google Scholar 

  90. Siminiak T, Egdell RM, O’Gorman DJ, Dye JF, Sheridan DJ (1995) Plasma-mediated Neutrophil Activation during Acute Myocardial Infarction: Role of Platelet-activating Factor. Clinical Science. 89: 171–6.

    Google Scholar 

  91. Sofianos A (1999) A Partial Characterization of Pancreatic Activating Factors. University of California San Diego, Master of Science Thesis.

    Google Scholar 

  92. Suematsu M, Tamatani T, Delano FA, Miyasaka M, Forrest M, Suzuki H, Schmid-Schönbein GW (1994) Microvascular Oxidative Stress Preceding Leukocyte Activation Elicited by in vivo Nitric Oxide Suppression. American Journal of Physiology. 266: H2410–5.

    PubMed  CAS  Google Scholar 

  93. Sutton DW, Schmid-Schönbein GW (1992) Elevation of Organ Resistance due to Leukocyte Perfusion. Am. J. Physiol. 262: H1646–50.

    PubMed  CAS  Google Scholar 

  94. Suzuki H, Schmid-Schönbein GW, Suematsu M, DeLano FA, Forrest MJ, Miyasaka M, Zweifach BW (1994) Impaired Leukocyte-endothelial Cell Interaction in Spontaneously Hypertensive Rats. Hypertension. 24: 719–27.

    Article  PubMed  CAS  Google Scholar 

  95. Suzuki H, Suematsu M, Schmid-Schönbein GW (1999) Microvascular Oxidative Stress, Immune Reaction and Apoptosis in Hypertensives. Clinical Hemorheology and Microcirculation. 21: 161–8.

    Google Scholar 

  96. Suzuki H, Swei A, Zweifach BW, Schmid-Schönbein GW (1995) In vivo Evidence for Microvascular Oxidative Stress in Spontaneously Hypertensive rats. Hydroethidine Microfluorography. Hypertension. 25: 1083–9.

    Google Scholar 

  97. Suzuki H, Swei A, Zweifach BW, Schmid-Schönbein GW (1995) In vivo Evidence for Microvascular Oxidative Stress in Spontaneously Hypertensive rats. Hydroethidine Microfluorography. Hypertension. 25: 1083–9.

    Google Scholar 

  98. Suzuki H, Zweifach BW, Schmid-Schönbein GW (1997) The Multifaceted Contribution of Microvascular Abnormalities to the Pathophysiology of the Hypertensive Syndrome. In: Handbook of Hypertension Vol. 17, Pathopysiology of Hypertension. ( Zanchetti A, Mancia G, eds.) Elsevier Science B.V. Amsterdam. 482–523.

    Google Scholar 

  99. Takase S, Lerond L, Bergan JJ, Schmid-Schönbein GW (2000) The Inflammatory Reaction during Venous Hypertension in the Rat. Microcirculation. 7: 1–11.

    Article  Google Scholar 

  100. Thivierge M, Parent JL, Stankova J, Rola-Pleszczynski M (1999) Modulation of Formyl Peptide Receptor Expression by IL-10 in Human Monocytes and Neutrophils. Journal of Immunology. 162: 3590–5.

    CAS  Google Scholar 

  101. Tillmanns H, Neumann FJ, Tiefenbacher C, Dorigo O, Parekh N, Waas W, Zimmermann R, Steinhausen M, Kuebler W (1993) Activation of Neutrophils in the Microvasculature of the Ischaemic and Reperfused Myocardium. European Heart Journal. 14 Suppl I: 82–6.

    Google Scholar 

  102. Topper JN, Cai J, Falb D, Gimbrone MA, Jr (1996) Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cyclooxygenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Synthase are Selectively Upregulated by Steady Laminar Shear Stress. Proceedings of the National Academy of Sciences of the United States of America. 93: 10417–22.

    Google Scholar 

  103. Vogt CJ, Schmid-Schönbein GW (2001) Microvascular endothelial Cell Death and Rarefaction in the glucocorticoid-induced hypertensive rat. Microcirculation. 8: 129–39.

    PubMed  CAS  Google Scholar 

  104. Vora M, Yssel H, de Vries JE, Karasek MA (1994) Antigen Presentation by Human Dermal Microvascular Endothelial Cells. Immunoregulatory Effect of IFN-gamma and IL-10. Journal of Immunology. 152: 5734–41.

    CAS  Google Scholar 

  105. Warnke KC, Skalak TC (1992) Leukocyte Plugging in vivo in Skeletal Muscle Arteriolar Trees. Am. J. Physiol. 262: H1149–55.

    PubMed  CAS  Google Scholar 

  106. Warshaw AL, O’Hara PJ (1978) Susceptibility of the Pancreas to Ischemic Injury in Shock. Ann Surg. 188: 197–201.

    Article  PubMed  CAS  Google Scholar 

  107. Welbourn R, Goldman G, Kobzik L, Paterson IS, Valeri CR, Shepro D, Hechtman HB (1992) Role of Neutrophil Adherence Receptors (CD 18) in Lung Permeability Following Lower Torso Ischemia. Circulation Research. 71: 82–6.

    Article  PubMed  CAS  Google Scholar 

  108. Wichmann MW, Remmers D, Ayala A, Chaudry IH (1998) [Contribution of Soft Tissue Trauma and/or Bone Fracture to Immune Suppression after Haemorrhagic Shock in the Animal Experiment]. Unfallchirurg. 101: 37–41.

    Google Scholar 

  109. Worthen GS, Schwab B, Elson EL, Downey GP (1989) Cellular Mechanics of Stimulated Neutrophil: Stiffening of Cells Induces Retention in Pores in vitro and Lung Capillaries in vivo. Science. 245: 183–6.

    Google Scholar 

  110. Zallen G, Moore EE, Johnson JL, Tamura DY, Ciesla DJ, Silliman CC (1999) Posthaemorrhagic Shock Mesenteric Lymph Primes Circulating Neutrophils and Provokes Lung Injury. Journal of Surgical Research. 83: 83–8.

    Article  PubMed  CAS  Google Scholar 

  111. Zimmerman GA, McIntyre TM, Prescott SM (1996) Adhesion and Signalling in Vascular Cell-cell Interactions. Journal of Clinical Investigation. 98: 1699–702.

    Article  PubMed  CAS  Google Scholar 

  112. Zimmerman GA, McIntyre TM, Prescott SM (1986) Thrombin Stimulates Neutrophil Adherence by an Endothelial Cell-dependent Mechanism: Characterization of the Response and Relationship to Platelet-activating Factor Synthesis. Annals of the New York Academy of Sciences. 485: 349–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag France

About this chapter

Cite this chapter

Schmid-Schönbein, G.W., Hugli, T.E., Mitsuoka, H., Kistler, E.B. (2003). Mechanisms for Microvascular Cell Activation: Pancreatic Digestive Enzyme Derived Inflammatory Mediators in Shock. In: Molecular Basis for Microcirculatory Disorders. Springer, Paris. https://doi.org/10.1007/978-2-8178-0761-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0761-4_12

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0763-8

  • Online ISBN: 978-2-8178-0761-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics