Skip to main content

Molecular Biology of Pediatric Bone Sarcomas

  • Chapter
  • First Online:
Pediatric Bone Sarcomas

Abstract

Genetic studies can help in diagnosis, prognosis and treatment of pediatric bone sarcoma patients. On the basis of recent discoveries, new drugs (targeted therapies) to help cure these patients are being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referenes

  1. Clark JC, Dass CR, Choong PF. A review of clinical and molecular prognostic factors in osteosarcoma. J Cancer Res Clin Oncol. 2008;134:281ā€“297.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Ek ET, Ojaimi J, Kitagawa Y, Choong PF. Does the degree of intratumoral microvessel density and VEGF expression have prognostic significance in osteosarcoma. Oncol Rep. 2006;16:17ā€“23.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Kreuter M, Bieker R, Bielack SS, Prognostic relevance of increased angiogenesis in osteosarcoma. Clin Cancer Res. 2004;10:8531ā€“8537.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Stempak D, Gammon J, Halton J, Moghrabi A, Koren G, Baruchel S. A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J Pediatr Hematol Oncol. 2006;28:720ā€“728.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Foukas AF, Deshmukh NS, Grimer RJ, Mangham DC, Mangos EG, Taylor S. Stage-IIB osteosarcomas around the knee A study of MMP-9 in surviving tumor cells. J Bone Joint Surg Br. 2002;84:706ā€“711.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Kido A, Tsutsumi M, Iki K, Overexpression of matrix metalloproteinase (MMP)-9 correlates with metastatic potency of spontaneous and 4-hydroxyaminoquinoline 1-oxide (4-HAQO)-induced transplantable osteosarcomas in rats. Cancer Lett. 1999;137:209ā€“216.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma A meta-analysis. Cancer. 2003 August 1;98(3):581ā€“589.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Baldini N, Scotlandi K, Serra M, P-glycoprotein expression in osteosarcoma: a basis for risk-adapted adjuvant chemotherapy. J Orthop Res. 1999;17:629ā€“632.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Park YB, Kim HS, Oh JH, Lee SH. The co-expression of p53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma. Int Orthop. 2001;24:307ā€“310.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 2007;26:1ā€“18.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Soussi T, Leblanc T, Baruchel A, Schaison G. Germline mutations of the p53 tumor-suppressor gene in cancer-prone families: a review. Nouv Rev Fr Hematol. 1993;35:33ā€“36.

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Kaseta MK, Khaldi L, Gomatos IP, Prognostic value of bax, bcl-2, and p53 staining in primary osteosarcoma. J Surg Oncol. 2008;97:259ā€“266.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  13. Wunder JS, Gokgoz N, Parkes R, TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 2005;23:1483ā€“1490.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Belchis DA, Gocke CD, Geradts J. Alterations in the rb, p16, and cyclin d1 cell cycle control pathway in osteosarcomas. Pediat Pathol Mol Med. 2000;19:377ā€“389.

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Yamaguchi T, Toguchida J, Yamamuro T, Allelotype analysis in osteosarcomas: frequent allele loss on 3q, 13q, 17p, and 18q. Cancer Res. 1992;52:2419ā€“2423.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Wadayama B, Feugeas O, Guriec N, Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma. J Clin Oncol. 1996;14:467ā€“472.

    Google ScholarĀ 

  17. Benassi MS, Molendini L, Gamberi G, Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int J Cancer. 1999;84:489ā€“493.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Miller CW, Aslo A, Won A, Tan M, Lampkin B, Koeffler HP. Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol. 1996;122:559ā€“565.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Wadayama B, Toguchida J, Shimizu T, Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res. 1994;54:3042ā€“3048.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. PatiƱo-GarcĆ­a A, PiƱeiro ES, DĆ­ez MZ, Iturriagagoitia LG, KlĆ¼ssmann FA, Ariznabarreta LS. Genetic and epigenetic alterations of the cell cycle regulators and tumor suppressor genes in pediatric osteosarcomas. J Pediatr Hematol Oncol. 2003;25:362ā€“367.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Wunder JS, Czitrom AA, Kandel R, Andrulis IL. Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst. 1991;83:194ā€“200.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Heinsohn S, Evermann U, Zur Stadt U, Bielack S, Kabisch H. Determination of the prognostic value of loss of heterozygosity at the retinoblastoma gene in osteosarcoma. Int J Oncol. 2007;30:1205ā€“1214.

    PubMedĀ  CASĀ  Google ScholarĀ 

  23. Chen K, Fallen S, Abaan HO, Hayran M, WNT10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr Blood Cancer. 2008;51:349ā€“355.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Hoang BH, Kubo T, Healey JH, Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer. 2004; 109:106ā€“111.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Rakesh Kumar V, Gupta N, Kakkar N, Sharma SC. Prognostic and predictive value of c-erbB2 overexpression in osteogenic sarcoma. J Cancer Res Ther. 2006;2:20ā€“23.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  26. Zhou H, Randall RL, Brothman AR, Maxwell T, Coffin CM, Goldsby RE. Her-2/neu expression in osteosarcoma increases risk of lung metastasis and can be associated with gene amplification. J Pediatr Hematol Oncol. 2003;25:27ā€“32.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Ferrari S, Zanella L, Alberghini M, Palmerini E, Staals E, Bacchini P. Prognostic significance of immunohistochemical expression of ezrin in non-metastatic high-grade osteosarcoma. Pediatr Blood Cancer. 2008;50:752ā€“756.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  28. Park HR, Jung WW, Bacchini P, Bertoni F, Kim YW, Park YK. Ezrin in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Pathol Res Pract. 2006;202:509ā€“515.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Chavez Kappel C, Velez-Yanguas C, Hirschfeld S, Helman LJ. Human osteosarcoma cell lines are dependent on insulin-like growth factor for in vitro growth. Cancer Res. 1994; 54:2803ā€“2807.

    Google ScholarĀ 

  30. Rodriguez-Galindo C, Poquette CA, Daw NC, Tan M, Meyer WH, and Cleveland JL. Circulating concentrations of IGF-I and IGFBP-3 are not predictive of incidence or clinical behavior of pediatric osteosarcoma. Med Pediatr Oncol. 2001;36:605ā€“611.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet. 2003;145:1ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Squire JA, Pei J, Marrano P, High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer. 2003;38:215ā€“225.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Forus A, Weghuis DO, Smeets D, Fodstad O, Myklebost O, Geurts van Kessel A. Comparative genomic hybridization analysis of human sarcomas: II. Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosomes Cancer. 1995;14:15ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Tarkkanen M, Karhu R, Kallioniemi A, Gains and losses of DNA sequences in osteosarcomas by comparative genomic hybridization. Cancer Res. 1995;55:1334ā€“1338.

    PubMedĀ  CASĀ  Google ScholarĀ 

  35. Zielenska M, Marrano P, Thorner P, High-resolution cDNA microarray CGH mapping of genomic imbalances in osteosarcoma using formalin-fixed paraffin-embedded tissue. Cytogenet Genome Res. 2004;107:77ā€“82.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Ozaki T, Schaefer KL, Wai D, Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer. 2002;102:355ā€“365.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Gurney JG, Davis S, Severson RK, Fang JY, Ross JA, Robison LL. Trends in cancer incidence among children in the U.S. Cancer. 1996;78:532ā€“541.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341:342ā€“352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. de Alava E, Gerald WL. Molecular biology of the Ewingā€™s sarcoma/primitive neuroectodermal tumor family. J Clin Oncol. 2000;18:204ā€“213.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Grier HE. The Ewing family of tumors Ewingā€™s sarcoma and primitive neuroectodermal tumors. Pediatr Clin North Am. 1997;44:991ā€“1004.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Franchi A, Pasquinelli G, Cenacchi G, Immunohistochemical and ultrastructural investigation of neural differentiation in Ewing sarcoma/PNET of bone and soft tissues. Ultrastruct Pathol. 2001;25:219ā€“225.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Kovar H, Dworzak M, Strehl S, Overexpression of the pseudoautosomal gene MIC2 in Ewingā€™s sarcoma and peripheral primitive neuroectodermal tumor. Oncogene. 1990;5:1067ā€“1070.

    PubMedĀ  CASĀ  Google ScholarĀ 

  43. Ushigome SMR, Sorensen PH. Ewing sarcoma/Primitive neuroectodermal tumor (PNET). In: Christopher DM, Fletcher KKU, Fredrik M, eds. Pathology and Genetics of Tumors of Soft Tissue and BoneWorld Health Organization Classification of Tumors. Lyon: Pathology and Genetics of Tumors of Soft Tissue and Bone International Agency for Research on Cancer; 2002.

    Google ScholarĀ 

  44. Peter M, Gilbert E, Delattre O. A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors. Lab Invest. 2001;81:905ā€“912.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Burchill SA. Ewingā€™s sarcoma: diagnostic, prognostic, and therapeutic implications of molecular abnormalities. J Clin Pathol. 2003;56:96ā€“102.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Paulussen M, Ahrens S, Craft AW, Ewingā€™s tumors with primary lung metastases: survival analysis of 114 (European Intergroup) Cooperative Ewingā€™s Sarcoma Studies patients. J Clin Oncol. 1998;16:3044ā€“3052.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Cotterill SJ, Ahrens S, Paulussen M, Prognostic factors in Ewingā€™s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewingā€™s Sarcoma Study Group. J Clin Oncol. 2000;18:3108ā€“114.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Mackall CL, Meltzer PS, Helman LJ. Focus on sarcomas. Cancer Cell. 2002;2:175ā€“178.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Delattre O, Zucman J, Plougastel B, Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumors. Nature. 1992;359:162ā€“165.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. de Alava E, Kawai A, Healey JH, EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewingā€™s sarcoma. J Clin Oncol. 1998;16:1248ā€“1255.

    PubMedĀ  CASĀ  Google ScholarĀ 

  51. Zoubek A, Dockhorn-Dworniczak B, Delattre O, Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients. J. Clin Oncol. 1996;14:1245ā€“1251.

    PubMedĀ  CASĀ  Google ScholarĀ 

  52. Ben-David Y, Giddens EB, Letwin K, Bernstein A. Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev. 1991;5:908ā€“918.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Melet F, Motro B, Rossi DJ, Zhang L, Bernstein A. Generation of a novel Fli-1 protein by gene targeting leads to a defect in thymus development and a delay in Friend virus-induced erythroleukemia. Mol Cell Biol. 1996;16:2708ā€“2718.

    PubMedĀ  CASĀ  Google ScholarĀ 

  54. Ohno T, Ouchida M, Lee L, Gatalica Z, Rao VN, Reddy ES. The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene. 1994;9:3087ā€“3097.

    PubMedĀ  CASĀ  Google ScholarĀ 

  55. Bertolotti A, Lutz Y, Heard DJ, Chambon P, Tora L. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 1996;15:5022ā€“5031.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Aman P, Panagopoulos I, Lassen C, Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics. 1996;37:1ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Shing DC, McMullan DJ, Roberts P, FUS/ERG gene fusions in Ewingā€™s tumors. Cancer Res. 2003;63:4568ā€“4576.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363:640ā€“644.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Labelle Y, Zucman J, Stenman G, Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation. Hum Mol Genet. 1995;4:2219ā€“2226.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994;54:2837ā€“2840.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H. Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene. 1998;17:603ā€“610.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Yang L, Chansky HA, Hickstein DD. EWS.Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing. J Biol Chem. 2000;275:37612ā€“37618.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Knoop LL, Baker SJ. The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem. 2000;275:24865ā€“24871.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Knoop LL, Baker SJ. EWS/FLI alters 5ā€™ā€²-splice site selection. J Biol Chem. 2001; 276:22317ā€“22322.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Spahn L, Petermann R, Siligan C, Schmid JA, Aryee DN, Kovar H. Interaction of the EWS NH2 terminus with BARD1 links the Ewingā€™s sarcoma gene to a common tumor suppressor pathway. Cancer Res. 2002;62:4583ā€“4587.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. May WA, Gishizky ML, Lessnick SL, Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993;90:5752ā€“5756.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Lessnick SL, Braun BS, Denny CT, May WA. Multiple domains mediate transformation by the Ewingā€™s sarcoma EWS/FLI-1 fusion gene. Oncogene. 1995;10:423ā€“431.

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. Janknecht R, Nordheim A. Gene regulation by Ets proteins. Biochim Biophys Acta. 1993;1155:346ā€“356.

    PubMedĀ  CASĀ  Google ScholarĀ 

  69. Huang HY, Illei PB, Zhao Z, Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol. 2005;23:548ā€“558.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Zucman J, Melot T, Desmaze C, Combinatorial generation of variable fusion proteins in the Ewing family of tumors. EMBO J. 1993;12:4481ā€“4487.

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Jeon IS, Davis JN, Braun BS, A variant Ewingā€™s sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene. 1995;10:1229ā€“1234.

    PubMedĀ  CASĀ  Google ScholarĀ 

  72. Kaneko Y, Yoshida K, Handa M, Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer. 1996;15:115ā€“121.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Peter M, Couturier J, Pacquement H, A new member of the ETS family fused to EWS in Ewing tumors. Oncogene. 1997;14:1159ā€“1164.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Torchia EC, Jaishankar S, Baker SJ. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res. 2003;63:3464ā€“3468.

    PubMedĀ  CASĀ  Google ScholarĀ 

  75. Gonzalez I, Vicent S, de Alava E, Lecanda F. EWS/FLI-1 oncoprotein subtypes impose different requirements for transformation and metastatic activity in a murine model. J Mol Med. 2007;85:1015ā€“1029.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Gershon TR, Oppenheimer O, Chin SS, Gerald WL. Temporally regulated neural crest transcription factors distinguish neuroectodermal tumors of varying malignancy and differentiation. Neoplasia. 2005;7:575ā€“584.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Teitell MA, Thompson AD, Sorensen PH, Shimada H, Triche TJ, Denny CT. EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts. Lab Invest. 1999;79:1535ā€“1543.

    PubMedĀ  CASĀ  Google ScholarĀ 

  78. Rorie CJ, Thomas VD, Chen P, Pierce HH, Oā€™Bryan JP, Weissman BE. The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors. Cancer Res. 2004;64:1266ā€“1277.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ. EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewingā€™s family of tumors. Cancer Res. 2005;65:4633ā€“4644.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  80. Deneen B, Denny CT. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene. 2001;20:6731ā€“6741.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. Castillero-Trejo Y, Eliazer S, Xiang L, Richardson JA, Ilaria RL, Jr. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors. Cancer Res. 2005;65:8698ā€“8705.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Riggi N, Cironi L, Provero P, Development of Ewingā€™s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res. 2005;65:11459ā€“11468.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  83. Tolar J, Nauta AJ, Osborn MJ, Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007;25:371ā€“379.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  84. Rangarajan A, Hong SJ, Gifford A, Weinberg RA. Species- and cell type-specific requirements for cellular transformation. Cancer Cell. 2004;6:171ā€“183.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Riggi N, Suva ML, Suva D, EWS-FLI-1 expression triggers a Ewingā€™s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 2008;68:2176ā€“2185.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell. 2007;11:421ā€“429.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Szuhai K, Ijszenga M, Tanke HJ, Rosenberg C, Hogendoorn PC. Molecular cytogenetic characterization of four previously established and two newly established Ewing sarcoma cell lines. Cancer Genet Cytogenet. 2006;166:173ā€“179.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Kovar H, Jug G, Aryee DN, Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene. 1997;15:2225ā€“2232.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y. Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet. 2000;120:91ā€“98.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Lopez-Guerrero JA, Pellin A, Noguera R, Carda C, Llombart-Bosch A. Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors. Lab Invest. 2001;81:803ā€“814.

    PubMedĀ  CASĀ  Google ScholarĀ 

  91. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730ā€“737.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Jamieson CH, Weissman IL, Passegue E. Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell. 2004;6:531ā€“533.

    PubMedĀ  CASĀ  Google ScholarĀ 

  93. Smith R, Owen LA, Trem DJ, Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewingā€™s sarcoma. Cancer Cell. 2006;9:405ā€“416.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Owen LA, Kowalewski AA, Lessnick SL. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewingā€™s sarcoma. PLoS ONE. 2008;3:e1965.

    ArticleĀ  CASĀ  Google ScholarĀ 

  95. Fukuma M, Okita H, Hata J, Umezawa A. Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma. Oncogene. 2003;22:1ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Nishimori H, Sasaki Y, Yoshida K, The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene. 2002;21:8302ā€“8309.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Zwerner JP, May WA. PDGF-C is an EWS/FLI induced transforming growth factor in Ewing family tumors. Oncogene. 2001;20:626ā€“633.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Matsumoto Y, Tanaka K, Nakatani F, Matsunobu T, Matsuda S, Iwamoto Y. Downregulation and forced expression of EWS-Fli1 fusion gene results in changes in the expression of G(1)regulatory genes. Br J Cancer. 2001;84:768ā€“775.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  99. Wai DH, Schaefer KL, Schramm A, Expression analysis of pediatric solid tumor cell lines using oligonucleotide microarrays. Int J Oncol. 2002;20:441ā€“451.

    PubMedĀ  CASĀ  Google ScholarĀ 

  100. Dauphinot L, De Oliveira C, Melot T, Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression. Oncogene. 2001;20:3258ā€“3265.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Bailly RA, Bosselut R, Zucman J, DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994;14:3230ā€“3241.

    PubMedĀ  CASĀ  Google ScholarĀ 

  102. Takahashi A, Higashino F, Aoyagi M, EWS/ETS fusions activate telomerase in Ewingā€™s tumors. Cancer Res. 2003;63:8338ā€“8344.

    PubMedĀ  CASĀ  Google ScholarĀ 

  103. Nakatani F, Tanaka K, Sakimura R, Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem. 2003;278:15105ā€“15115.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  104. Hahm KB. Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet. 1999;23:481.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Im YH, Kim HT, Lee C, EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res. 2000;60:1536ā€“1540.

    PubMedĀ  CASĀ  Google ScholarĀ 

  106. Prieur A, Tirode F, Cohen P, Delattre O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol. 2004;24:7275ā€“7283.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  107. Scotlandi K, Benini S, Nanni P, Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewingā€™s sarcoma in athymic mice. Cancer Res. 1998;58:4127ā€“4131.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Scotlandi K, Avnet S, Benini S, Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewingā€™s sarcoma cells. Int J Cancer. 2002;101:11ā€“16.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Scotlandi K, Maini C, Manara MC, Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewingā€™s sarcoma cells. Cancer Gene Ther. 2002;9:296ā€“307.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Manara MC, Landuzzi L, Nanni P, Preclinical in vivo study of new insulin-like growth factor-I receptor-specific inhibitor in Ewingā€™s sarcoma. Clin Cancer Res. 2007;13:1322ā€“1330.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  111. Kinsey M, Smith R, Lessnick SL. NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewingā€™s sarcoma. Mol Cancer Res. 2006;4:851ā€“859.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. 112. Garcia-Aragoncillo E, Carrillo J, Lalli E, et al. DAX1, a direct target of EWS/FLI1 oncoprotein, is a principal regulator of cell-cycle progression in Ewingā€™s tumor cells. Oncogene. 2008.

    Google ScholarĀ 

  113. Mendiola M, Carrillo J, Garcia E, The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors. Int J Cancer. 2006;118:1381ā€“1389.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana PatiƱo-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

PatiƱo-Garcia, A., Zalacain-Diez, M., Lecanda, F. (2009). Molecular Biology of Pediatric Bone Sarcomas. In: San-Julian, M., CaƱadell, J. (eds) Pediatric Bone Sarcomas. Springer, London. https://doi.org/10.1007/978-1-84882-130-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-130-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-129-3

  • Online ISBN: 978-1-84882-130-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics