Skip to main content

BioSecure Multimodal Evaluation Campaign 2007 (BMEC’2007)

  • Chapter
  • First Online:
Guide to Biometric Reference Systems and Performance Evaluation

Abstract

This chapter presents the experimental results from the mobile scenario of the BioSecure Multimodal Evaluation Campaign 2007 (BMEC’2007). This competition was organized by the BioSecure Network of Excellence (NoE) and aimed at testing the robustness of monomodal and multimodal biometric verification systems to degraded acquisition conditions. The database used for the evaluation is the large-scale multimodal database acquired in the framework of the BioSecure NoE in mobility conditions. During this evaluation, the BioSecure benchmarking methodology was followed to enable a fair comparison of the submitted algorithms. In this way, we believe that the BMEC’2007 database and results will be useful both to the participants and, more generally, to all practitioners in the field as a benchmark for improving methods and for enabling evaluation of algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A score of the fusion development database is meant to be either a similarity score or a distance measure.

  2. 2.

    A score of the fusion test database is meant to be either a similarity score or a distance measure.

References

  1. ALIZE: a free and open tool for speaker recognition. http://www.lia.univ-avignon.fr/heberges/ALIZE/.

  2. L. Allano, A.C. Morris, H. Sellahewa, S. Garcia-Salicetti, J. Koreman, S. Jassim, B. Ly Van, D. Wu, and B. Dorizzi. Non intrusive multi-biometrics on a mobile device: a comparison of fusion techniques. In Proceedings of SPIE 2006, conference on Biometric Techniques for Human Identification III, Orlando, Florida, USA, April 2006.

    Google Scholar 

  3. E. Bailly-Baillière, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler, J. Mariéthoz, J. Matas, K. Messer, V. Popovici, F. Porée, B. Ruiz, and J.-P. Thiran. The BANCA Database and Evaluation Protocol. In 4th International Conference on Audio-and Video-Based Biometric Person Authentication (AVBPA'03), pages 625–638, Surrey, UK, 2003.

    Google Scholar 

  4. C. Barras and J.-L. Gauvain. Feature and Score Normalization for Speaker Verification of Cellular Data. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong, China, 2003.

    Google Scholar 

  5. BioSecure Mutimodal Evaluation Campaign 2007 (BMEC2007). http://www.biometrics.itsudparis.eu/BMEC2007/.

  6. BioSecure Network of Excellence. http://biosecure.info/.

  7. R.M. Bolle, N.K. Ratha, and S. Pankanti. Evaluation techniques for biometrics-based authentication systems (FRR). In Proc. 15th Internat. Conf. Pattern Recogn., pages 835–842000.

    Google Scholar 

  8. R.M. Bolle, N.K. Ratha, and S. Pankanti. Error analysis of pattern recognition systems - the subsets bootstrap. Computer Vision and Image Understanding, 93:1–33, 2004.

    Article  Google Scholar 

  9. J.-F. Bonastre, N. Scheffer, C. Fredouille, and D. Matrouf. NIST'04 speaker recognition evaluation campaign: new LIA speaker detection plateform based on ALIZE toolkit. In 2004 NIST SRE'04 Workshop: speaker detection evaluation campaign, Toledo, Spain, 2004.

    Google Scholar 

  10. H. Bredin and G. Chollet. Audio-Visual Speech Synchrony Measure for Talking-Face Identity Verification. In IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP, 2007.

    Google Scholar 

  11. N. Brummer, L. Burget, J. Cernocky, O. Glembek, F. Grezl, M. Karafiat, D.A. van Leeuwen, P. Matejka, P. Scwartz, and A. Strasheim. Fusion of heterogeneous speaker recognition systems in the STBU submission for the NIST speaker recognition evaluation 200In IEEE Transactions on Audio, Speech and Signal Processing, 200To appear.

    Google Scholar 

  12. N. Brummer and J. du Preez. Application independent evaluation of speaker detection. Computer Speech and Language, 20, pp.230–275, 2006.

    Google Scholar 

  13. A.J. Dobson, An Introduction to Generalized Linear Models. CRC Press, 1990.

    Google Scholar 

  14. B. Dumas, C. Pugin, J. Hennebert, D. Petrovska-Delacrétaz, A. Humm, F. Evquoz, R. Ingold, and D. Von Rotz. MyIdea - multimodal biometrics database, description of acquisition protocols. In Proc. of Third COST 275 Workshop (COST 275), pages 59–62, Hatfield UK, October 2005.

    Google Scholar 

  15. NIST Speaker Recognition Evaluation. http://www.nist.gov/speech/tests/spk/.

  16. Crazy Talk face animation from Reallusion. http://crazytalk.reallusion.com/.

  17. B. Fauve, N.W.D. Evans, and J.S.D. Mason. Improving the Performance of Text-Independent Short Duration GMM- and SVM-Based Speaker Verification. In Odyssey the Speaker and Language Recognition Workshop, 200To appear.

    Google Scholar 

  18. J. Fierrez, J. Ortega-Garcia, D.T. Toledano, and J. Gonzalez-Rodriguez. Biosec baseline corpus: A multimodal biometric database. Pattern Recognition, 40(4):1389–1392, 2007.

    Article  MATH  Google Scholar 

  19. Y. Freund and R.E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Scences, 55(1):119–139, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Galbally, J. Fierrez, J. Ortega-Garcia, M.R. Freire, F. Alonso-Fernandez, J.A. Siguenza, J. Garrido-Salas, E. Anguiano-Rey, G. Gonzalez de Rivera, R. Ribalda, M. Faundez-Zanuy, J.A. Ortega, V. Cardenoso-Payo. A. Viloria, C.E. Vivaracho, Q.I. Moro, J.J. Igarza, J. Sanchez, I. Hernaez, and C. Orrite-Urunuela. BiosecurID: a Multimodal Biometric Database. In Proc. MADRINET Workshop, pages 68–76, November 2007.

    Google Scholar 

  21. S. Garcia-Salicetti, C. Beumier, G. Chollet, B. Dorizzi, J. Leroux les Jardias, J. Lunter, Y. Ni, and D. Petrovska-Delacrétaz. BIOMET: a Multimodal Person Authentication Database Including Face, Voice, Fingerprint, Hand and Signature Modalities. In 4th International Conference on Audio and Video Based Biometric Person Authentification (AVBPA), Guilford UK, June 2003.

    Google Scholar 

  22. S. Garcia-Salicetti, J. Fierrez-Aguilar, F. Alonso-Fernandez, C. Vielhauer, R. Guest, L. Allano, T. Doan Trung, T. Scheidat, B. Ly Van, J. Dittmann, B. Dorizzi, J. Ortega-Garcia, J. Gonzalez-Rodriguez, M. Bacile di Castiglione, and M. Fairhurst. Biosecure Reference Systems for Online Signature Verification: a study of complementarity. Annales des Télécommunications, Special Issue on Multimodal Biometrics, pages 36–61, January-February 2007.

    Google Scholar 

  23. S. Garcia-Salicetti, M.A. Mellakh, L. Allano, and B. Dorizzi. Multimodal biometric score fusion: the mean rule vs. support vector classifiers. In Proceedings of EUSIPCO 2005, Antalya, Turkey, September 2005.

    Google Scholar 

  24. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, section 4.1, 2001.

    Google Scholar 

  25. J. Hennebert, R. Loeffel, A. Humm, and R. Ingold. A New Forgery Scenario Based On Regaining Dynamics Of Signature. pages 366–375, Seoul, Korea, 2007.

    Google Scholar 

  26. IV2: Identification par l'Iris et le Visage via la Vidéo. http://iv2.ibisc.fr/PageWeb-IV2.html.

  27. A. K. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biometric systems. Pattern Recognition, 38(12):2270–2285, December 2005.

    Article  Google Scholar 

  28. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics, 10, pp. 707–710, 1966.

    MathSciNet  Google Scholar 

  29. BECARS Library and Tools for Speaker Verification. http://www.tsi.enst.fr/becars/index.php.

  30. R. Lienhart and J. Maydt. An Extended Set of Haar-like Features for Rapid Object Detection. IEEE ICIP, 1:900–903, 2002.

    Google Scholar 

  31. A. Martin, G.R. Doddington, T.Kamm, M. Ordowski, and M.A. Przybocki. The DET curve in assessment of detection task performance. In Proceedings of Eurospeech, pages 1895–1898, Rhodes, Greece, 1997.

    Google Scholar 

  32. K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: The extended M2VTS database. In Proc. Second International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA), 1999.

    Google Scholar 

  33. J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, M.F.J. Gonzalez and V. Espinosa, A. Satue, I. Hernaez, J.J. Igarza , C. Vivaracho, D. Escudero, and Q.I. Moro. MCYT baseline corpus: a bimodal biometric database. IEE Proceedings Vision, Image and Signal Processing, 150(6):391–401, 2003.

    Article  Google Scholar 

  34. D. Petrovska-Delacrétaz, S. Lelandais, J. Colineau, L. Chen, B. Dorizzi, E. Krichen, M.A. Mellakh, A. Chaari, S. Guerfi, J. DHose, M. Ardabilian, and B. Ben Amor. The iv2 multimodal (2d, 3d, stereoscopic face, talking face and iris) biometric database, and the iv2 2007 evaluation campaign. In the proceedings of the IEEE Second International Conference on Biometrics: Theory, Applications (BTAS), Washington DC, USA, September 2008.

    Google Scholar 

  35. P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W.Worek. Overview of the Face Recognition Grand Challenge. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 947–954, Seoul, Korea, 2005.

    Google Scholar 

  36. D.A. Reynolds, T.F. Quatieri, and R. Dunn. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, 10(1–3):19–41, 2000.

    Article  Google Scholar 

  37. C. Sanderson and K.K. Paliwal. Fast Feature Extraction Method for Robust Face Verification. IEE Electronics Letters, 38(25):1648–1650, 2002.

    Article  Google Scholar 

  38. T. Scheidat, C. Vielhauer, and J. Dittmann. Distance-Level Fusion Strategies for Online Signature Verification. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Amsterdam, The Netherlands, 2005.

    Google Scholar 

  39. F. Schiel, S. Steininger, and U. Trk. The SmartKom multimodal corpus at BAS. In Proc. Intl. Conf. on Language Resources and Evaluation, 2002.

    Google Scholar 

  40. S. Schimke, C. Vielhauer, and J. Dittmann. Using Adapted Levenshtein Distance for On-Line Signature Authentication. In Proceedings of the ICPR 2004, IEEE 17th International Conference on Pattern Recognition, ISBN 0-7695-2128-2, 2004.

    Google Scholar 

  41. Festival Text-To-Speech System. http://www.cstr.ed.ac.uk/projects/festival/.

  42. Faculté Polytechnique de Mons TCTS MBrola voices. http://tcts.fpms.ac.be/synthesis/mbrola.html.

  43. The Hidden Markov Model Toolkit (HTK). http://htk.eng.cam.ac.uk/.

  44. Speech Signal Processing (SPro) Toolkit. http://www.irisa.fr/metiss/guig/spro/index.html.

  45. Tools for Fusion and Calibration of automatic speaker detection systems (FoCal). http://www.dsp.sun.ac.za/~nbrummer/focal/.

  46. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

    Article  Google Scholar 

  47. B. Ly Van, S. Garcia-Salicetti, and B. Dorizzi. On using the Viterbi Path along with HMM Likelihood Information for On-line Signature Verification. In Proceedings of the IEEE Transactions on Systems, Man and Cybernetics, Part B, to appear.

    Google Scholar 

  48. C. Watson, M. Garris, E. Tabassi, C. Wilson, R. McCabe, and S. Janet. User's Guide to Fingerprint Image Software 2 - NFIS2 (http://fingerprint.nist.gov/NFIS/). NIST 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Mayoue .

Editor information

Editors and Affiliations

Appendices

11.8 Equal Error Rate

The equal error rate is computed as the point where FAR(t) = FRR(t) (Fig. 11.16a). In practice, the score distributions are not continuous and a crossover point might not exist. In this case (Fig. 11.16b,c), the EER value is computed as follows

Fig. 11.16
figure 16figure 16figure 16

FAR vs FRR curve: (a) example where EER point exists, (b) and (c) examples where EER point does not exist

$$EER = \left \{\begin{array}{lc} \frac{FAR({t}_{1})+FRR({t}_{1})} {2} & \textrm{if }FAR({t}_{1}) - FRR({t}_{1}) \leq FRR({t}_{2}) - FAR({t}_{2}) \\ \frac{FAR({t}_{2})+FRR({t}_{2})} {2} & \textrm{otherwise} \end{array} \right .$$

where

$$t1 {=\max }_{t\in S}\{t\vert FRR(t) \leq FAR(t)\},\ t2 {=\min }_{t\in S}\{t\vert FRR(t) \geq FAR(t)\}$$

and S is the set of thresholds used to calculate the score distributions.

11.9 Parametric Confidence Intervals

In this section, we present the parametric method used to estimate the confidence intervals on the FRR and FAR values. This method has already been explained by R.M. Bolle et al. [8].

Suppose we have M client scores and N impostor scores. We denote these sets of scores by \(<Emphasis Type="Bold">\text{X}</Emphasis> =\{ {X}_{1},\ldots ,{X}_{M}\}\) and \(<Emphasis Type="Bold">\text{Y}</Emphasis> =\{ {Y }_{1},\ldots ,{Y }_{N}\}\) respectively. In the following, we suppose that available scores are similarity measures.

Let \text{S} be the set of thresholds used to calculate the score distributions. For the set of client scores, \text{X}, assume that this is a sample of M numbers drawn from a population with distribution F, that is, \(F(x) = Prob(X \leq x),x \in <Emphasis Type="Bold">\text{S}</Emphasis>\).

Let the impostor scores \text{Y} be a sample of N numbers drawn from a population with distribution \(G(y) = Prob(Y \leq y),y \in <Emphasis Type="Bold">\text{S}</Emphasis>\). In this way, FRR(x) = F(x) and \(FAR(y) = 1 - G(y)\), x and y\text{S}.

From now, we have to find an estimate of these distributions at some threshold t 0\text{S} and then, we have to estimate the confidence interval for these estimations.

  • The estimate of F(t 0) using data \text{X} is the unbiased statistic:

    $$ \begin{array}{rcl} {\hat{\rm F}}({t}_{0}) = \frac{1} {M}\sum_{i=1}^{M}{\bf 1}({X}_{ i} \leq {t}_{0})& & 11.1 \\ \end{array} $$

    F̂(t 0) is so obtained by simply counting the X i \text{X} that are smaller than t 0 and dividing by M.

    In the same way, the estimate G(t 0) using data Y is the unbiased statistic:

    $$\begin{array}{rcl} {\hat{\rm G}}({t}_{0}) = \frac{1} {N}\sum_{i=1}^{N}{\bf 1}({Y }_{ i} \leq {t}_{0})& & 11.2 \\ \end{array}$$
  • In the following, let us concentrate on the distribution F. For the moment, let us keep x = t 0 and let us determine the confidence interval for F̂(t 0).First define Z as a binomial random variable, the number of successes, where success means (Xt 0) is true, in M trials with probability of success \(F({t}_{0}) = Prob(X \leq {t}_{0})\). This random variable Z has binomial probability mass distribution:

    $$P(Z = z) = {M}\choose{z}F{({t}_{0})}^{z}{(1 - F({t}_{0}))}^{M-z},\textrm{ }z = 0,\ldots ,M$$

    The expectation of Z is E(Z) = MF(t 0) and the variance is \({\sigma }^{2}(Z) = MF({t}_{0})\ (1 - F({t}_{0}))\).From this, it follows that the random variable ZM has expectation F(t 0) and variance \(F({t}_{0})(1 - F({t}_{0}))/M\). When M is large enough, using the law of large numbers, ZM is distributed according to a normal distribution—i.e., \(Z/M \sim N(F({t}_{0}),F({t}_{0})(1 - F({t}_{0}))/M)\).

    It now can be seen that Ẑ∕M=F̂(t 0). Hence, for large M, F̂(t 0) is normally distributed, with an estimate of the variance given by:

    $$\begin{array}{rcl} \hat{\sigma }({t}_{0}) = \sqrt{\frac{{\hat{\rm F}} ({t}_{0 } )(1 - {\hat{\rm F}} ({t}_{0 } ))}{M}} & & 11.4 \\ \end{array}$$

    So, confidence intervals can be determined. For example, a 90% interval of confidence is

    $$\begin{array}{rcl} F({t}_{0}) \in [{\hat{\rm F}}({t}_{0}) - 1.645\hat{\sigma }({t}_{0}),{\hat{\rm F}}({t}_{0}) + 1.645\hat{\sigma }({t}_{0})]& & 11.5 \\ \end{array}$$

    Estimates Ĝ(t 0) for the probability distribution G(t 0) using a set of impostor scores \text{Y} can be obtained in a similar fashion. Parametric confidence intervals are computed by replacing F̂(t 0) with Ĝ(t 0) in Eqs. 11.4 and 11.5.

11.10 Participants

AMSL Otto-von-Guericke-Universitaet MagdeburgAdvanced Multimedia and Security Lab, Biometrics GroupPO Box 4120, Universitaetsplatz 239106 Magdeburg - Deutschland

Balamand University of BalamandDeir El-Balamand, El-Koura, North Lebanon

EPFL Ecole Polytechnique Fédérale de LausanneSpeech Processing and Biometrics GroupEcublens, 1015 Lausanne - Switzerland

Swansea University of Wales Swansea, Speech and Image Lab.Singleton Park - SA2 8PP, Swansea - United Kingdom

TELECOM-ParisTech (formerly GET-ENST), Département TSI46 rue Barrault, 75013 Paris - France

TELECOM SudParis (formerly GET-INT), Département Electronique et Physique 9 rue Charles Fourier, 91011 Evry Cedex 11 - France

UAM (formerly UPM), Universidad Autonoma de MadridBiometrics Research Lab., Ctra. Colmenar, km. 15, E-28049 Madrid - Spain

UNIFRI University of Fribourg, Informatics Department, DIVA groupChemin du Musée 3, 1700 Fribourg - Switzerland

UNIS University of Surrey, Centre for Vision, Speech and Signal ProcessingGU2 7XH Guildford - United Kingdom

UniTOURS Université Fran\c{c}ois Rabelais de Tours, Laboratoire d’informatique64 avenue Jean Portalis, 37200 Tours - France

UVIGO Universidad de Vigo, Teoria de la Senal y Comunicaciones ETSI Telecomunicacion, Campus Universitario, 36310 Vigo - Spain

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mayoue, A. et al. (2009). BioSecure Multimodal Evaluation Campaign 2007 (BMEC’2007). In: Petrovska-Delacrétaz, D., Dorizzi, B., Chollet, G. (eds) Guide to Biometric Reference Systems and Performance Evaluation. Springer, London. https://doi.org/10.1007/978-1-84800-292-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-292-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-291-3

  • Online ISBN: 978-1-84800-292-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics