Skip to main content

Coronary Artery Disease: Pathologic Anatomy and Pathogenesis

  • Chapter
Cardiovascular Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James TN. The coronary circulation and conduction system in acute myocardial infarction. Prog Cardiovasc Dis 1968;10:410–446.

    PubMed  CAS  Google Scholar 

  2. Baroldi G. Diseases of extramural coronary arteries. In: Silver MD, ed. Cardiovascular Pathology, 2nd ed. New York: Churchill Livingstone, 1991:487–563.

    Google Scholar 

  3. Buja LM, Willerson JT. The role of coronary artery lesions in ischemic heart disease: insights from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum Pathol 1987;18:451–461.

    PubMed  CAS  Google Scholar 

  4. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115–126.

    PubMed  CAS  Google Scholar 

  5. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–874.

    PubMed  CAS  Google Scholar 

  6. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004;109(suppl II):II-2–II-10.

    Google Scholar 

  7. Schwartz CJ, Mitchell JRA. The morphology, terminology and pathogenesis of arterial plaques. Postgrad Med J 1962;38:25–34.

    PubMed  CAS  Google Scholar 

  8. Pearson TA, Kramer EC, Solez K, Heptinstall RH. The human atherosclerotic plaque. Am J Pathol 1977;86:657–664.

    PubMed  CAS  Google Scholar 

  9. Buja LM, Clubb FJ Jr, Bilheimer DW, Willerson JT. Pathobiology of human familial hypercholesterolemia and a related animal model, the Watanabe heritable hyperlipidaemic rabbit. Eur Heart J 1990;11(suppl E):41–52.

    PubMed  CAS  Google Scholar 

  10. Glagov S, Zarins C, Giddens DP, Nu DN. Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988;112:1018–1031.

    PubMed  CAS  Google Scholar 

  11. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–1375.

    PubMed  CAS  Google Scholar 

  12. Burke AP, Kolodgie FD, Farb A. Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002;105:297–303.

    PubMed  Google Scholar 

  13. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med 1979;91:350–356.

    PubMed  CAS  Google Scholar 

  14. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992;326:242–250,310–318.

    PubMed  CAS  Google Scholar 

  15. Davies MJ, Woolf N, Robertson WB. Pathology of acute myocardial infarction with particular reference to occlusive coronary thrombi. Br Heart J 1976;38:659–664.

    PubMed  CAS  Google Scholar 

  16. Ridolfi RL, Hutchins GM. The relationship between coronary artery lesions and myocardial infarcts: ulceration of atherosclerotic plaques precipitating coronary thrombosis. Am Heart J 1977;93:468–486.

    PubMed  CAS  Google Scholar 

  17. Horie T, Sekiguchi M, Hirosawa K. Coronary thrombosis in pathogenesis of acute myocardial infarction: histopathological study of coronary arteries in 108 necropsied cases using serial section. Br Heart J 1978;40:153–161.

    PubMed  CAS  Google Scholar 

  18. Davies MJ, Fulton WFM, Robertson WB. The relation of coronary thrombosis to ischemic myocardial necrosis. J Pathol 1979;172:99–110.

    Google Scholar 

  19. Silver MD, Baroldi G, Mariani F. The relationship between acute occlusive coronary thrombi and myocardial infarction studied in 100 consecutive patients. Circulation 1980;61:219–227.

    PubMed  CAS  Google Scholar 

  20. Buja LM, Willerson JT. Clinicopathologic correlates of acute ischemic heart disease syndromes. Am J Cardiol 1981;47:343–356.

    PubMed  CAS  Google Scholar 

  21. Falk E. Plaque rupture with severe preexisting stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983;50:127–134.

    PubMed  CAS  Google Scholar 

  22. Davies MJ, Thomas AEC. Plaque fissuring-the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 1985;53:363–373.

    PubMed  CAS  Google Scholar 

  23. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275.

    PubMed  CAS  Google Scholar 

  24. Schaar JA, Muller JE, Falk E, et al. Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J 2004;25:1077–1082.

    PubMed  Google Scholar 

  25. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.

    PubMed  Google Scholar 

  26. Buja LM, Willerson JT. Role of inflammation in coronary plaque disruption. Circulation 1994;89:503–505.

    PubMed  CAS  Google Scholar 

  27. Kolodgie FD, Gold HK, Burke AP, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316–2325.

    PubMed  CAS  Google Scholar 

  28. Buja LM, Hillis LD, Petty CS, Willerson JT. The role of coronary arterial spasm in ischemic heart disease. Arch Pathol Lab Med 1981;105:221–226.

    PubMed  CAS  Google Scholar 

  29. Roberts WC, Curry RC Jr, Isner JM, et al. Sudden death in Prinzmetal’s angina with coronary spasm documented by angiography: analysis of three necropsy patients. Am J Cardiol 1982;50:203–210.

    PubMed  CAS  Google Scholar 

  30. MacAlpin RN. Relation of coronary arterial spasm to sites of organic stenosis. Am J Cardiol 1980;46:143–153.

    PubMed  CAS  Google Scholar 

  31. Suzuki H, Kawai S, Aizawa T, et al. Histological evaluation of coronary plaque in patients with variant angina: relationship between vasospasm and neointimal hyperplasia in primary coronary lesions. J Am Coll Cardiol 1999;33:198–205.

    PubMed  CAS  Google Scholar 

  32. El-Maraghi NRH, Sealey BJ. Recurrent myocardial infarction in a young man due to coronary arterial spasm demonstrated at autopsy. Circulation 1980;61:199–207.

    PubMed  CAS  Google Scholar 

  33. Forman MB, Oates JA, Robertson D, Robertson RM, Roberts LJ 2d, Virmani R. Increased adventitial mast cells in a patient with coronary spasm. N Engl J Med 1985;313:1138–1141.

    PubMed  CAS  Google Scholar 

  34. Kohchi K, Takebayashi S, Hiroki T, Nobuyoshi M. Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy. Circulation 1985;71:709–716.

    PubMed  CAS  Google Scholar 

  35. Laine P, Kaartinen M, Pentilla A, Panula P, Paavonen T, Kovanen PJ. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related artery. Circulation 1999;26:361–369.

    Google Scholar 

  36. Wheeler MT, Allikian MJ, Heydemann A, Hadhazy M, Zarnegar S, McNally EM. Smooth muscle cell-extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycandeficient cardiomyopathy. J Clin Invest 2004;113:668–675.

    PubMed  CAS  Google Scholar 

  37. Cheitlin MD, McAllister HA, de Castro CM. Myocardial infarction without atherosclerosis. JAMA 1975;231:951–959.

    PubMed  CAS  Google Scholar 

  38. Dowling GP, Buja LM. Spontaneous coronary artery dissection occurs with and without periadventitial inflammation. Arch Pathol Lab Med 1987;111:470–472.

    PubMed  CAS  Google Scholar 

  39. Stenberg RG, Winniford MD, Hillis LD, Dowling GP, Buja LM. Simultaneous acute thrombosis of two major coronary arteries following intravenous cocaine use. Arch Pathol Lab Med 1989;113:521–524.

    PubMed  CAS  Google Scholar 

  40. Kloner RA, Hale S, Alker K, Rezkalla S. The effects of acute and chronic cocaine use on the heart. Circulation 1992;85:407–419.

    PubMed  CAS  Google Scholar 

  41. Gregg DE, Patterson RE. Functional importance of coronary collaterals. N Engl J Med 1980;303:1404–1406.

    PubMed  CAS  Google Scholar 

  42. El-Maraghi N, Genton E. The relevance of platelet and fibrin thromboembolism of the coronary microcirculation with special reference to sudden cardiac death. Circulation 1980;62:936–944.

    PubMed  CAS  Google Scholar 

  43. Davies MJ, Thomas AC, Knapman PA, Hangartner JR. Intramyocardial platelet aggregation in patients with unstable angina pectoris suffering sudden ischemic cardiac death. Circulation 1986;73:418–427.

    PubMed  CAS  Google Scholar 

  44. Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation 1998;98:2334–2351.

    PubMed  CAS  Google Scholar 

  45. Buja LM, Willerson JT. Relationship of ischemic heart disease to sudden cardiac death. J Forensic Sci 1991;36:25–33.

    PubMed  CAS  Google Scholar 

  46. Reichenbach DD, Moss NS, Meyer E. Pathology of the heart in sudden cardiac death. Am J Cardiol 1977;39:865–872.

    PubMed  CAS  Google Scholar 

  47. Baroldi G, Falzi G, Mariani F. Sudden coronary death: a postmortem study in 208 selected cases compared to 97 “control” subjects. Am Heart J 1979;98:20–31.

    PubMed  CAS  Google Scholar 

  48. Warnes CA, Roberts WC. Sudden coronary death: comparison of patients with to those without coronary thrombus at necropsy. Am J Cardiol 1984;54:1206–1211.

    PubMed  CAS  Google Scholar 

  49. Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 1984;310:1137–1140.

    PubMed  CAS  Google Scholar 

  50. Davies MJ, Bland JM, Hangartner JR, Angelini A, Thomas AC. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 1989;10:203–208.

    PubMed  CAS  Google Scholar 

  51. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. Sudden coronary death. Frequency of active lesions, inactive coronary lesions, and myocardial infarction. Circulation 1995;92:1701–1709.

    PubMed  CAS  Google Scholar 

  52. Virmani R, Burke AP, Farb A. Sudden cardiac death. Cardiovasc Pathol 2001;10:275–282.

    PubMed  CAS  Google Scholar 

  53. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354–1363.

    PubMed  CAS  Google Scholar 

  54. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who die suddenly. N Engl J Med 1997;336:1276–1282.

    PubMed  CAS  Google Scholar 

  55. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 1998;97:2110–2116.

    PubMed  CAS  Google Scholar 

  56. Burke AP, Farb A, Malcom GT, Liang Y-H, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 1999;281:921–926.

    PubMed  CAS  Google Scholar 

  57. Olsen EGJ. Ischemic disease of the myocardium and its complications. In: Silver MD, ed. Cardiovascular Pathology, 2nd ed. New York: Churchill Livingstone, 1991:671–717.

    Google Scholar 

  58. Lavie CJ, Gersh BJ. Mechanical and electrical complications of acute myocardial infarction. Mayo Clin Proc 1990;65:709–730.

    PubMed  CAS  Google Scholar 

  59. Hillis LD, Braunwald E. Myocardial ischemia. N Engl J Med 1977;296:971–978, 1034–1041, 1093–1096.

    PubMed  CAS  Google Scholar 

  60. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death: II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633–644

    PubMed  CAS  Google Scholar 

  61. Reimer KA, Ideker RE. Myocardial ischemia and infarction: anatomic and biochemical substrates for ischemic cell death and ventricular arrhythmias. Hum Pathol 1987;18:462–475.

    PubMed  CAS  Google Scholar 

  62. Buja LM, Tofe AJ, Kulkarni PV, et al. Sites and mechanisms of localization of technetium-99m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 1977;60:724–740.

    PubMed  CAS  Google Scholar 

  63. Buja LM, Hagler HK, Willerson JT. Altered calcium homeostasis in the pathogenesis of myocardial ischemic and hypoxic injury. Cell Calcium 1988;9:205–217.

    PubMed  CAS  Google Scholar 

  64. Buja LM. Lipid abnormalities in myocardial cell injury. Trends Cardiovasc Med 1991;1:40–45.

    CAS  Google Scholar 

  65. Thandroyen FT, Morris AC, Hagler HK, et al. Intracellular calcium transients and arrhythmia in isolated heart cells. Circ Res 1991;69:810–819.

    PubMed  CAS  Google Scholar 

  66. Thandroyen FT, Bellotto D, Katayama A, Hagler HK, Willerson JT, Buja LM. Subcellular electrolyte alterations during hypoxia and following reoxygenation in isolated rat ventricular myocytes. Circ Res 1992;71:106–119.

    PubMed  CAS  Google Scholar 

  67. Buja LM. Modulation of the myocardial response to ischemia. Lab Invest 1998;78:1345–1373.

    PubMed  CAS  Google Scholar 

  68. Buja LM, Eigenbrodt ML, Eigenbrodt EH. Apoptosis and necrosis: basic types and mechanisms of cell death. Arch Pathol Lab Med 1993;117:1208–1214.

    PubMed  CAS  Google Scholar 

  69. Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 1995;146:3–15.

    PubMed  CAS  Google Scholar 

  70. Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.

    PubMed  CAS  Google Scholar 

  71. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J. Apoptosis and myocardial infarction. Basic Res Cardiol 1998;93(suppl 3):8–12.

    PubMed  Google Scholar 

  72. Reed JC. Mechanisms of apoptosis. Am J Pathol 2000;157:1415–1430.

    PubMed  CAS  Google Scholar 

  73. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–219.

    PubMed  CAS  Google Scholar 

  74. Buja LM, Entman ML. Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation 1998;98:1355–1357.

    PubMed  CAS  Google Scholar 

  75. Kang PM, Izumo S. Apoptosis and heart failure: a critical review of the literature. Circ Res 2000;86:1107–1113.

    PubMed  CAS  Google Scholar 

  76. Ohno M, Takemura G, Ohno A, et al. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation 1998;98:1422–1430

    PubMed  CAS  Google Scholar 

  77. Kanoh M, Takemura G, Misao J, et al. Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 1999;99:2757–2764.

    PubMed  CAS  Google Scholar 

  78. Anversa P, Leri A, Beltrami CA, Guerra S, Kajstura J. Myocyte death and growth in the failing heart. Lab Invest 1998;78:767–786.

    PubMed  CAS  Google Scholar 

  79. Anversa P. Myocyte death in the pathological heart. Circ Res 2000;86:121–124.

    PubMed  CAS  Google Scholar 

  80. Didenko VV, Ngo H, Baskin DS. Early necrotic DNA degradation: presence of blunt-ended DNA breaks, 3′ and 5′ overhangs in apoptosis, but only 5′ overhangs in early necrosis. Am J Pathol 2003;162:1571–1578.

    PubMed  CAS  Google Scholar 

  81. Dumont EAWJ, Hofstra L, van Heerde WL, et al. Cardiomyocyte death induced by myocardial ischemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation 2000;102:1564–1568.

    PubMed  CAS  Google Scholar 

  82. Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning in rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996;97:2391–2398.

    PubMed  CAS  Google Scholar 

  83. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998;97:276–281.

    PubMed  CAS  Google Scholar 

  84. Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Letters 1996;378:107–110.

    PubMed  CAS  Google Scholar 

  85. Kang PM, Haunstetter A, Aoiki H, Usheva A, Izumo S. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 2000;87:118–125.

    PubMed  CAS  Google Scholar 

  86. Shiraishi J, Tatsumi T, Keira N, et al. Important role of energy-dependent mitochondrial pathways in cultured rat cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 2001;281:H1637–H1647.

    PubMed  CAS  Google Scholar 

  87. Anversa P, Sonnenblick EH. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog Cardiovasc Dis 1990;33:49–70.

    PubMed  CAS  Google Scholar 

  88. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth and regeneration in cardiac hypertrophy and failure. Circ Res 2003;92:139–150.

    PubMed  CAS  Google Scholar 

  89. Maxwell SRJ, Lip GYH. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997;58:95–117.

    PubMed  CAS  Google Scholar 

  90. Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thoracic Surg 1998;68:1905–1912.

    Google Scholar 

  91. Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Heart J 1999;138:S69–75.

    PubMed  CAS  Google Scholar 

  92. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  93. Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 1990;66:913–931.

    PubMed  CAS  Google Scholar 

  94. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey J. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 1991;84:350–356.

    PubMed  CAS  Google Scholar 

  95. Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A, Harken AH. Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol 1997;29:175–182.

    PubMed  CAS  Google Scholar 

  96. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 2003;83:1113–1151.

    PubMed  CAS  Google Scholar 

  97. Garlid KD, Dos Santos P, Xie Z-J, Costa ADT, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection. Biochim Biophys Acta Bioenerg 2003;1606:1–21.

    CAS  Google Scholar 

  98. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003;285:H921–H930.

    PubMed  CAS  Google Scholar 

  99. Oldenberg O, Cohen MV, Downey JM. Mitochondrial KATP channels in preconditioning. J Mol Cell Cardiol 2003;35:569–575.

    Google Scholar 

  100. Krieg T, Cohen MV, Downey JM. Mitochondria and their role in preconditioning’s trigger phase. Basic Res Cardiol 2003;98:228–234.

    PubMed  CAS  Google Scholar 

  101. Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 1993;72:1293–1299.

    PubMed  CAS  Google Scholar 

  102. Bolli R. The late phase of preconditioning. Circ Res 2000;87:972–983.

    PubMed  CAS  Google Scholar 

  103. Dawn B, Guo Y, Rezazadeh A, et al. Tumor necrosis factor-á does not modulate ischemia/reperfusion injury in naïve myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol 2004;37:51–61.

    PubMed  CAS  Google Scholar 

  104. Dawn B, Xuan YT, Guo Y, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 2004;64:61–71.

    PubMed  CAS  Google Scholar 

  105. Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 2004;44:1103–1110.

    PubMed  Google Scholar 

  106. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl Ntert-butyl nitrone. J Clin Invest 1988;82:476–485

    PubMed  CAS  Google Scholar 

  107. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E. Pathophysiology and pathogenesis of stunned myocardium: depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 1987;79:950–961.

    PubMed  CAS  Google Scholar 

  108. Bush LR, Buja LM, Tilton G, et al. Effects of propranolol and diltiazem alone and in combination on the recovery of left ventricular segmental function after temporary coronary occlusion and long term reperfusion in conscious dogs. Circulation 1985;72:413–430.

    PubMed  CAS  Google Scholar 

  109. Buja LM, Willerson JT. Infarct size-can it be measured or modified in humans? Prog Cardiovasc Dis 1987;29:271–289.

    PubMed  CAS  Google Scholar 

  110. Ryan TJ, Anderson JL, Antman EM, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction. J Am Coll Cardiol 1996;28:1328–1428.

    PubMed  CAS  Google Scholar 

  111. Ryan TJ, Antman EM, Brooks NH, et al. 1999 update: ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J Am Coll Cardiol 1999;34:890–911.

    PubMed  CAS  Google Scholar 

  112. Buja LM, Willerson JT, Murphree SS. Pathobiology of arterial wall injury, atherosclerosis, and coronary angioplasty. In: Black AJR, Anderson HV, Ellis SG, eds. Complications of Coronary Angioplasty. New York: Marcel Dekker, 1991:11–33.

    Google Scholar 

  113. Waller BF. “Crackers, breakers, stretchers, drillers, scrapers, shavers, burners, welders and melters”: the future treatment of atherosclerotic coronary artery disease? A clinicalmorphologic assessment. J Am Coll Cardiol 1989;13:969–987

    PubMed  CAS  Google Scholar 

  114. Willerson JT, Yao SK, McNatt J, et al. Frequency and severity of cyclic flow alteration and platelet aggregation predict the severity of neointimal proliferation following experimental coronary stenosis and endothelial injury. Proc Natl Acad Sci USA 1991;88:10624–10628.

    PubMed  CAS  Google Scholar 

  115. Farb A, Roberts DK, Pichard AD, Kent KM, Virmani R. Coronary artery morphologic features after coronary rotational atherectomy: insights into mechanisms of lumen enlargement and embolization. Am Heart J 1995;129:1058–1067.

    PubMed  CAS  Google Scholar 

  116. Topaz O, McIvor M, Stone GW, et al. Acute results, complications, and effect of lesion characteristics on outcome with the solid-state, pulsed-wave, mid-infrared laser angioplasty system: final multicenter registry report. Lasers Surg Med 1998;22:228–239.

    PubMed  CAS  Google Scholar 

  117. Farb A, Lindsay J Jr, Virmani R. Pathology of bailout coronary stenting in human beings. Am Heart J 1999;137:621–631.

    PubMed  CAS  Google Scholar 

  118. Farb A, Sangiorgi G, Carter AJ, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 1999;99:44–52.

    PubMed  CAS  Google Scholar 

  119. Farb A, Kolodgie FD, Hwang J-Y, et al. Extracellular matrix changes in stented human coronary arteries. Circulation 2004;110:940–947.

    PubMed  CAS  Google Scholar 

  120. Virmani R, Farb A, Guagliumi G, Kolodgie FD. Drug-eluting stents: caution and concerns for long-term outcome. Coron Artery Dis 2004;15:313–318.

    PubMed  Google Scholar 

  121. Schwartz RS, Chronos NA, Virmani R. Preclinical restenosis models and drug eluting stents: still important, still much to learn. J Am Coll Cardiol 2004;44:1373–1385.

    PubMed  CAS  Google Scholar 

  122. Lie JT, Lawrie GM, Morris GC Jr. Aortocoronary bypass saphenous vein graft atherosclerosis: anatomic study of 99 vein grafts from normal and hyperlipoproteinemic patients up to 75 months postoperatively. Am J Cardiol 1977;40:906–913.

    PubMed  CAS  Google Scholar 

  123. Bulkley BH, Hutchins GM. Pathology of coronary artery bypass graft surgery. Arch Pathol Lab Med 1978;102:273–280.

    PubMed  CAS  Google Scholar 

  124. Grondin CM, Campeau L, Lesperance J, et al. Atherosclerotic changes in coronary vein grafts six years after operation: angiographic aspects in 100 patients. J Thorac Cardiovasc Surg 1979;77:24–31.

    PubMed  CAS  Google Scholar 

  125. Loop FD, Lytle BW, Cosgrove DM, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 1986;314:1–6.

    PubMed  CAS  Google Scholar 

  126. Shelton ME, Forman MB, Virmani R, Bajaj A, Stoney WS, Atkinson JB. A comparison of morphologic and angiographic findings in long-term internal mammary artery and saphenous vein bypass grafts. J Am Coll Cardiol 1988;11:297–307.

    PubMed  CAS  Google Scholar 

  127. Nabel EG. Gene therapy for cardiovascular diseases. Circulation 1995;91:541–548.

    PubMed  CAS  Google Scholar 

  128. Simari RD, Sam H, Rekhter M, et al. Regulation of cellular proliferation and intimal formation following balloon injury in atherosclerotic rabbit arteries. J Clin Invest 1996;98:225–235.

    PubMed  CAS  Google Scholar 

  129. Zoldhelyi P, McNatt J, Xu XM, et al. Prevention of arterial thrombosis by adenovirus-mediated transfer of cyclooxygenase gene. Circulation 1996;93:10–17.

    PubMed  CAS  Google Scholar 

  130. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular generation. Circulation 2002;105:732–738.

    PubMed  CAS  Google Scholar 

  131. Tulis DA, Mnjoyan ZH, Schiesser RL, et al. Adenovirus gene transfer of fortilin attenuates neointima formation through suppression of vascular smooth muscle cell proliferation and migration. Circulation 2003;107:98–105.

    PubMed  CAS  Google Scholar 

  132. Nabel EG. Genomic medicine: cardiovascular disease. N Engl J Med 2003;349:60–72.

    PubMed  CAS  Google Scholar 

  133. Ganesh SK, Skelding KA, Mehta L, et al. Rationale and study design of the CardioGene Study: genomics of in-stent restenosis. Pharmacogenomics 2004;5:952–1004.

    PubMed  Google Scholar 

  134. Mulcahy D, Knight C, Stables R, Fox K. Lasers, burns, cuts, tingles and pumps: a consideration of alternative treatments for intractable angina. Br Heart J 1994;71:406–407.

    PubMed  CAS  Google Scholar 

  135. Schoebel FC, Frazier OH, Jessurun GAJ, et al. Refractory angina pectoris in end-stage coronary artery disease: evolving therapeutic concepts. Am Heart J 1997;134:587–602.

    PubMed  CAS  Google Scholar 

  136. Sundt TM III, Rogers JG. Transmyocardial laser revascularization for inoperable coronary artery disease. Curr Opin Cardiol 1997;12:441–446.

    PubMed  Google Scholar 

  137. Kwong KF, Kanellopoulos GK, Nickols JC, et al. Transmyocardial laser treatment denervates canine myocardium. J Thorac Cardiovasc Surg 1997;114:883–889.

    PubMed  CAS  Google Scholar 

  138. Schumacher B, Pecker P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation 1998;97:645–650.

    PubMed  CAS  Google Scholar 

  139. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98:2800–2804.

    PubMed  CAS  Google Scholar 

  140. Folkman J. Angiogenic therapy of the human heart. Circulation 1998;97:628–629.

    PubMed  CAS  Google Scholar 

  141. Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis? Cell 1996;87:1153–1155.

    PubMed  CAS  Google Scholar 

  142. Nabel EG. Delivering genes to the heart-right where it counts! Nat Med 1999;5:141–142.

    PubMed  CAS  Google Scholar 

  143. Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 1998;83:1–14.

    PubMed  CAS  Google Scholar 

  144. Soonpoa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998;83:15–26.

    Google Scholar 

  145. Nadal-Ginard B, Kajstura J, Anversa P, Leri A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J Clin Invest 2003;111:1457–1459.

    PubMed  CAS  Google Scholar 

  146. Anversa P, Sussman MA, Bolli R. Molecular genetic advances in cardiovascular medicine: focus on the myocyte. Circulation 2004;109:2832–2838.

    PubMed  Google Scholar 

  147. Strauer BE, Brehm M, Zeus T, et al. Repair of infracted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–1918.

    PubMed  Google Scholar 

  148. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294–2302.

    PubMed  Google Scholar 

  149. Perin EC, Geng YJ, Willerson JT. Adult stem cell therapy in perspective. Circulation 2003;107:935–938.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Maximilian Buja, L., McAllister, H.A. (2007). Coronary Artery Disease: Pathologic Anatomy and Pathogenesis. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics