Skip to main content

Effector Recruitment Method to Study Spatially Regulated Activation of Ras and Rho GTPases

  • Protocol
  • First Online:
Ras Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1120))

Abstract

Ras and Rho family GTPases control a wide variety of cellular processes, and the signaling downstream of these GTPases is influenced by their subcellular localization when activated. Since only a minority of total cellular GTPases is active, observation of the total subcellular distribution of GTPases does not reveal where active GTPases are localized. In this chapter, we describe the use of effector recruitment assays to monitor the subcellular localization of active Ras and Rho family GTPases. The recruitment assay relies on preferential binding of downstream effectors to active GTPases versus inactive GTPases. Tagging the GTPase-binding-domain (GBD) of a downstream effector with a fluorescent protein produces a probe that is recruited to compartments where GTPases are active. We describe an example of a recruitment assay using the GBD of PAK1 to monitor Rac1 activity and explain how the assay can be expanded to determine the subcellular localization of activation of other GTPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cox AD, Der CJ (2010) Ras history: the saga continues. Small GTPases 1:2–27

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bivona TG, Quatela SE, Bodemann BO et al (2006) PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21:481–493

    Article  PubMed  CAS  Google Scholar 

  3. Kraynov VS, Chamberlain C, Bokoch GM et al (2000) Localized Rac activation dynamics visualized in living cells. Science 290:333–337

    Article  PubMed  CAS  Google Scholar 

  4. Pertz O (2010) Spatio-temporal Rho GTPase signaling—where are we now? J Cell Sci 123:1841–1850

    Article  PubMed  CAS  Google Scholar 

  5. Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18:578–585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Benard V, Bohl BP, Bokoch GM (1999) Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274:13198–13204

    Article  PubMed  CAS  Google Scholar 

  7. Herrmann C, Martin GA, Wittinghofer A (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270:2901–2905

    Article  PubMed  CAS  Google Scholar 

  8. Bivona TG, Philips MR (2005) Analysis of Ras and Rap activation in living cells using fluorescent Ras binding domains. Methods 37:138–145

    Article  PubMed  CAS  Google Scholar 

  9. Tapon N, Nagata K, Lamarche N et al (1998) A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signalling pathways. EMBO J 17: 1395–1404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Alberts AS, Bouquin N, Johnston LH et al (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem 273:8616–8622

    Article  PubMed  CAS  Google Scholar 

  11. Vega FM, Ridley AJ (2007) SnapShot: Rho family GTPases. Cell 129:1430

    Article  PubMed  Google Scholar 

  12. Lammers M, Meyer S, Kuhlmann D et al (2008) Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem 283:35236–35246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. de Rooij J, Bos JL (1997) Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–625

    Article  PubMed  Google Scholar 

  14. Taylor SJ, Shalloway D (1996) Cell cycle-dependent activation of Ras. Curr Biol 6: 1621–1627

    Article  PubMed  CAS  Google Scholar 

  15. Pertz O, Hodgson L, Klemke RL et al (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072

    Article  PubMed  CAS  Google Scholar 

  16. Guilluy C, Dubash AD, Garcia-Mata R (2011) Analysis of RhoA and Rho GEF activity in whole cells and the cell nucleus. Nat Protoc 6:2050–2060

    Article  PubMed  CAS  Google Scholar 

  17. Bivona TG, Wiener HH, Ahearn IM et al (2004) Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J Cell Biol 164:461–470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Kim SH, Li Z, Sacks DB (2000) E-cadherin-mediated cell-cell attachment activates Cdc42. J Biol Chem 275:36999–37005

    Article  PubMed  CAS  Google Scholar 

  19. Benink HA, Bement WM (2005) Concentric zones of active RhoA and Cdc42 around single cell wounds. J Cell Biol 168:429–439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Michaelson D, Abidi W, Guardavaccaro D et al (2008) Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. J Cell Biol 181:485–496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Manser E, Leung T, Salihuddin H et al (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46

    Article  PubMed  CAS  Google Scholar 

  22. Alan JK, Berzat AC, Dewar BJ et al (2010) Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol Cell Biol 30:4324–4338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Sherman LS, Atit R, Rosenbaum T et al (2000) Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 275:30740–30745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Bivona TG, Perez De Castro I, Ahearn IM et al (2003) Phospholipase C gamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698

    Article  PubMed  CAS  Google Scholar 

  25. Chiu VK, Bivona T, Hach A et al (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350

    PubMed  CAS  Google Scholar 

  26. Huveneers S, Danen EH (2009) Adhesion signaling—crosstalk between integrins, Src and Rho. J Cell Sci 122:1059–1069

    Article  PubMed  CAS  Google Scholar 

  27. ten Klooster JP, Hordijk PL (2007) Targeting and localized signalling by small GTPases. Biol Cell 99:1–12

    Article  PubMed  Google Scholar 

  28. Wang L, Zheng Y (2007) Cell type-specific functions of Rho GTPases revealed by gene targeting in mice. Trends Cell Biol 17: 58–64

    Article  PubMed  CAS  Google Scholar 

  29. Park TJ, Mitchell BJ, Abitua PB et al (2008) Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40:871–879

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Reeder MK, Serebriiskii IG, Golemis EA et al (2001) Analysis of small GTPase signaling pathways using p21-activated kinase mutants that selectively couple to Cdc42. J Biol Chem 276:40606–40613

    Article  PubMed  CAS  Google Scholar 

  31. Mira JP, Benard V, Groffen J et al (2000) Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A 97:185–189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Kontani K, Tada M, Ogawa T et al (2002) Di-Ras, a distinct subgroup of ras family GTPases with unique biochemical properties. J Biol Chem 277:41070–41078

    Article  PubMed  CAS  Google Scholar 

  33. Heo WD, Inoue T, Park WS et al (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Takahashi K, Nakagawa M, Young SG et al (2005) Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem 280: 32768–32774

    Article  PubMed  CAS  Google Scholar 

  35. Beguin P, Nagashima K, Gonoi T et al (2001) Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411:701–706

    Article  PubMed  CAS  Google Scholar 

  36. Mochizuki N, Yamashita S, Kurokawa K et al (2001) Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411:1065–1068

    Article  PubMed  CAS  Google Scholar 

  37. Roy S, Plowman S, Rotblat B et al (2005) Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol Cell Biol 25:6722–6733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Prior IA, Harding A, Yan J et al (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  PubMed  CAS  Google Scholar 

  39. Willingham MC, Pastan I, Shih TY et al (1980) Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 19:1005–1014

    Article  PubMed  CAS  Google Scholar 

  40. Michaelson D, Silletti J, Murphy G et al (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152:111–126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139

    Article  PubMed  CAS  Google Scholar 

  42. Furuhjelm J, Peranen J (2003) The C-terminal end of R-Ras contains a focal adhesion targeting signal. J Cell Sci 116:3729–3738

    Article  PubMed  CAS  Google Scholar 

  43. Takaya A, Kamio T, Masuda M et al (2007) R-Ras regulates exocytosis by Rgl2/Rlf-mediated activation of RalA on endosomes. Mol Biol Cell 18:1850–1860

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Ohba Y, Mochizuki N, Yamashita S et al (2000) Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3. J Biol Chem 275:20020–20026

    Article  PubMed  CAS  Google Scholar 

  45. Calvo F, Crespo P (2009) Structural and spatial determinants regulating TC21 activation by RasGRF family nucleotide exchange factors. Mol Biol Cell 20:4289–4302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Ehrhardt A, David MD, Ehrhardt GR et al (2004) Distinct mechanisms determine the patterns of differential activation of H-Ras, N-Ras, K-Ras 4B, and M-Ras by receptors for growth factors or antigen. Mol Cell Biol 24:6311–6323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Beguin P, Mahalakshmi RN, Nagashima K et al (2006) Nuclear sequestration of beta-subunits by Rad and Rem is controlled by 14-3-3 and calmodulin and reveals a novel mechanism for Ca2+ channel regulation. J Mol Biol 355:34–46

    Article  PubMed  CAS  Google Scholar 

  48. Shipitsin M, Feig LA (2004) RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol Cell Biol 24:5746–5756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Takaya A, Ohba Y, Kurokawa K et al (2004) RalA activation at nascent lamellipodia of epidermal growth factor-stimulated Cos7 cells and migrating Madin-Darby canine kidney cells. Mol Biol Cell 15:2549–2557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Kashatus DF, Lim KH, Brady DC et al (2011) RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13: 1108–1115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Martin TD, Mitin N, Cox AD et al (2012) Phosphorylation by protein kinase C alpha regulates RalB small GTPase protein activation, subcellular localization, and effector utilization. J Biol Chem 287:14827–14836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Pizon V, Desjardins M, Bucci C et al (1994) Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J Cell Sci 107: 1661–1670

    PubMed  CAS  Google Scholar 

  53. Hodges-Loaiza HB, Parker LE, Cox AD (2011) Prenylation and phosphorylation of Ras superfamily small GTPases. In: Hrycyna CA, Bergo MO, Tamanoi F (eds) The enzymes. Academic, Burlington, pp 43–69

    Google Scholar 

  54. Paganini S, Guidetti GF, Catricala S et al (2006) Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie 88:285–295

    Article  PubMed  CAS  Google Scholar 

  55. Guo Z, Yuan J, Tang W et al (2007) Cloning and characterization of the human gene RAP2C, a novel member of Ras family, which activates transcriptional activities of SRE. Mol Biol Rep 34:137–144

    Article  PubMed  CAS  Google Scholar 

  56. Uechi Y, Bayarjargal M, Umikawa M et al (2009) Rap2 function requires palmitoylation and recycling endosome localization. Biochem Biophys Res Commun 378:732–737

    Article  PubMed  CAS  Google Scholar 

  57. Elam C, Hesson L, Vos MD et al (2005) RRP22 is a farnesylated, nucleolar, Ras-related protein with tumor suppressor potential. Cancer Res 65:3117–3125

    PubMed  CAS  Google Scholar 

  58. Rybkin II, Kim MS, Bezprozvannaya S et al (2007) Regulation of atrial natriuretic peptide secretion by a novel Ras-like protein. J Cell Biol 179:527–537

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Pistoni M, Verrecchia A, Doni M et al (2010) Chromatin association and regulation of rDNA transcription by the Ras-family protein RasL11a. EMBO J 29:1215–1224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Pezeron G, Lambert G, Dickmeis T et al (2008) Rasl11b knock down in zebrafish suppresses one-eyed-pinhead mutant phenotype. PLoS One 3:e1434

    Article  PubMed  PubMed Central  Google Scholar 

  61. Beguin P, Mahalakshmi RN, Nagashima K et al (2005) Roles of 14-3-3 and calmodulin binding in subcellular localization and function of the small G-protein Rem2. Biochem J 390:67–75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Finlin BS, Gau CL, Murphy GA et al (2001) RERG is a novel ras-related, estrogen-regulated and growth-inhibitory gene in breast cancer. J Biol Chem 276:42259–42267

    Article  PubMed  CAS  Google Scholar 

  63. Lee CH, Della NG, Chew CE et al (1996) Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J Neurosci 16:6784–6794

    PubMed  CAS  Google Scholar 

  64. Nalbant P, Hodgson L, Kraynov V et al (2004) Activation of endogenous Cdc42 visualized in living cells. Science 305:1615–1619

    Article  PubMed  CAS  Google Scholar 

  65. Aronheim A, Broder YC, Cohen A et al (1998) Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 8:1125–1128

    Article  PubMed  CAS  Google Scholar 

  66. Aspenstrom P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377:327–337

    Article  PubMed  PubMed Central  Google Scholar 

  67. Srinivasan S, Wang F, Glavas S et al (2003) Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160:375–385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Philips MR, Pillinger MH, Staud R et al (1993) Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science 259:977–980

    Article  PubMed  CAS  Google Scholar 

  69. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312

    Article  PubMed  CAS  Google Scholar 

  70. Dubash AD, Guilluy C, Srougi MC et al (2011) The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS One 6:e17380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Adamson P, Paterson HF, Hall A (1992) Intracellular localization of the P21rho proteins. J Cell Biol 119:617–627

    Article  PubMed  CAS  Google Scholar 

  72. Wang L, Yang L, Luo Y et al (2003) A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells. J Biol Chem 278:44617–44625

    Article  PubMed  CAS  Google Scholar 

  73. Dietrich KA, Schwarz R, Liska M et al (2009) Specific induction of migration and invasion of pancreatic carcinoma cells by RhoC, which differs from RhoA in its localisation and activity. Biol Chem 390:1063–1077

    Article  PubMed  CAS  Google Scholar 

  74. Murphy C, Saffrich R, Grummt M et al (1996) Endosome dynamics regulated by a Rho protein. Nature 384:427–432

    Article  PubMed  CAS  Google Scholar 

  75. Samson T, Welch C, Monaghan-Benson E et al (2010) Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell 21:1629–1642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Li X, Bu X, Lu B et al (2002) The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol 22:1158–1171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Nobes CD, Lauritzen I, Mattei MG et al (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141:187–197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Madigan JP, Bodemann BO, Brady DC et al (2009) Regulation of Rnd3 localization and function by protein kinase C alpha-mediated phosphorylation. Biochem J 424:153–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Foster R, Hu KQ, Lu Y et al (1996) Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16:2689–2699

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Kawase K, Nakamura T, Takaya A et al (2006) GTP hydrolysis by the Rho family GTPase TC10 promotes exocytic vesicle fusion. Dev Cell 11:411–421

    Article  PubMed  CAS  Google Scholar 

  81. Okada S, Yamada E, Saito T et al (2008) CDK5-dependent phosphorylation of the Rho family GTPase TC10(alpha) regulates insulin-stimulated GLUT4 translocation. J Biol Chem 283:35455–35463

    Article  PubMed  CAS  Google Scholar 

  82. Chiang SH, Hou JC, Hwang J et al (2002) Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport. J Biol Chem 277:13067–13073

    Article  PubMed  CAS  Google Scholar 

  83. Baschieri F, Farhan H (2012) Crosstalk of small GTPases at the Golgi apparatus. Small GTPases 3:80–90

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ohba Y, Ikuta K, Ogura A et al (2001) Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J 20:3333–3341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Wozniak MA, Kwong L, Chodniewicz D et al (2005) R-Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol Biol Cell 16:84–96

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Herrmann C, Horn G, Spaargaren M et al (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271:6794–6800

    Article  PubMed  CAS  Google Scholar 

  87. Rosario M, Paterson HF, Marshall CJ (2001) Activation of the Ral and phosphatidylinositol 3′ kinase signaling pathways by the ras-related protein TC21. Mol Cell Biol 21:3750–3762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Hofer F, Berdeaux R, Martin GS (1998) Ras-independent activation of Ral by a Ca(2+)-dependent pathway. Curr Biol 8:839–842

    Article  PubMed  CAS  Google Scholar 

  89. Cannon JL, Labno CM, Bosco G et al (2001) Wasp recruitment to the T cell:APC contact site occurs independently of Cdc42 activation. Immunity 15:249–259

    Article  PubMed  CAS  Google Scholar 

  90. Hemsath L, Dvorsky R, Fiegen D et al (2005) An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol Cell 20:313–324

    Article  PubMed  CAS  Google Scholar 

  91. Saito S, Liu XF, Kamijo K et al (2004) Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. J Biol Chem 279:7169–7179

    Article  PubMed  CAS  Google Scholar 

  92. Lucey M, Unger H, van Golen KL (2010) RhoC GTPase activation assay. J Vis Exp 22, pii: 2083

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huff, L.P., DeCristo, M.J., Cox, A.D. (2014). Effector Recruitment Method to Study Spatially Regulated Activation of Ras and Rho GTPases. In: Trabalzini, L., Retta, S. (eds) Ras Signaling. Methods in Molecular Biology, vol 1120. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-791-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-791-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-790-7

  • Online ISBN: 978-1-62703-791-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics