Skip to main content

Visualization of DNA and Protein–DNA Complexes with Atomic Force Microscopy

  • Protocol
  • First Online:
Book cover Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

This article describes sample preparation techniques for AFM imaging of DNA and protein–DNA complexes. The approach is based on chemical functionalization of the mica surface with aminopropyl silatrane (APS) to yield an APS-mica surface. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations, and in a broad range of pH. The chapter describes the methodologies for the preparation of APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The AFM applications are illustrated with examples of images of DNA and protein–DNA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H, Gerber C et al (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61

    Article  Google Scholar 

  2. Binning G, Rohrer H (1982) Scanning tunneling microscopy. Helvetica Phys Acta 55:726–735

    Google Scholar 

  3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  4. Ohnesorge F, Binnig G (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456

    Article  CAS  PubMed  Google Scholar 

  5. Gross L, Mohn F, Moll N et al (2012) Bond-order discrimination by atomic force microscopy. Science 337:1326–1329

    Article  CAS  PubMed  Google Scholar 

  6. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-A scale. J Appl Phys 61:4723–4729

    Article  CAS  Google Scholar 

  7. Zhong Q, Inniss D, Kjoller K et al (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692

    CAS  Google Scholar 

  8. Wickramasinghe HK (2012) Development of the technology and applications of the scanning probe microscope. Microsc Anal 26:27–30

    Google Scholar 

  9. Vetcher AA, Lushnikov AY, Navarra-Madsen J et al (2006) DNA topology and geometry in Flp and Cre recombination. J Mol Biol 357:1089–1104

    Article  CAS  PubMed  Google Scholar 

  10. Lushnikov AY, Potaman VN, Lyubchenko YL (2006) Site-specific labeling of supercoiled DNA. Nucleic Acids Res 34:e111, 111–117

    Article  PubMed Central  PubMed  Google Scholar 

  11. Soyfer VN, Potaman VN (1996) Triple-helical nucleic acids. Springer, New York

    Book  Google Scholar 

  12. Tiner WJ Sr, Potaman VN, Sinden RR et al (2001) The structure of intramolecular triplex DNA: atomic force microscopy study. J Mol Biol 314:353–357

    Article  CAS  PubMed  Google Scholar 

  13. Potaman VN, Ussery DW, Sinden RR (1996) Formation of a combined H-DNA/open TATA box structure in the promoter sequence of the human Na, K-ATPase alpha2 gene. J Biol Chem 271:13441–13447

    Article  CAS  PubMed  Google Scholar 

  14. Kato M, McAllister CJ, Hokabe S et al (2002) Structural heterogeneity of pyrimidine/purine-biased DNA sequence analyzed by atomic force microscopy. Eur J Biochem 269:3632–3636

    Article  CAS  PubMed  Google Scholar 

  15. Shlyakhtenko LS, Hsieh P, Grigoriev M (2000) A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol 296:1169–1173

    Article  CAS  PubMed  Google Scholar 

  16. Lyubchenko YL, Jacobs BL, Lindsay SM et al (1995) Atomic force microscopy of nucleoprotein complexes. Scanning Microsc 9:705–724, discussion 724–707

    CAS  PubMed  Google Scholar 

  17. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47:206–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lyubchenko YL (2011) Preparation of DNA and nucleoprotein samples for AFM imaging. Micron 42:196–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lyubchenko YL, Shlyakhtenko LS, Ando T (2011) Imaging of nucleic acids with atomic force microscopy. Methods 54:274–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ando T, Uchihashi T, Kodera N et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225

    Article  CAS  PubMed  Google Scholar 

  21. Ando T, Uchihashi T, Kodera N et al (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20:448–458

    Article  CAS  PubMed  Google Scholar 

  22. Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki Y, Higuchi Y, Hizume K et al (2010) Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Ultramicroscopy 110:682–688

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki Y, Gilmore JL, Yoshimura SH et al (2011) Visual analysis of concerted cleavage by Type IIF restriction enzyme SfiI in subsecond time region. Biophys J 101:2992–2998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50:7901–7908

    Article  CAS  PubMed  Google Scholar 

  26. Shlyakhtenko LS, Lushnikov AY, Miyagi A et al (2012) Specificity of binding of single-stranded DNA-binding protein to its target. Biochemistry 51:1500–1509

    Article  CAS  PubMed  Google Scholar 

  27. Shlyakhtenko LS, Lushnikov AY, Miyagi A et al (2012) Nanoscale structure and dynamics of ABOBEC3G complexes with single-stranded DNA. Biochemistry 51:6432–6440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gilmore JL, Suzuki Y, Tamulaitis G et al (2009) Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 48:10492–10498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Beebe TP Jr, Wilson TE, Ogletree DF et al (1989) Direct observation of native DNA structures with the scanning tunneling microscope. Science 243:370–372

    Article  CAS  PubMed  Google Scholar 

  30. Arscott PG, Lee G, Bloomfield VA et al (1989) Scanning tunnelling microscopy of Z-DNA. Nature 339:484–486

    Article  CAS  PubMed  Google Scholar 

  31. Lee G, Arscott PG, Bloomfield VA et al (1989) Scanning tunneling microscopy of nucleic acids. Science 244:475–477

    Article  CAS  PubMed  Google Scholar 

  32. Clemmer CR, Beebe TP Jr (1991) Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251:640–642

    Article  CAS  PubMed  Google Scholar 

  33. Lyubchenko YL, Gall AA, Shlyakhtenko LS et al (1992) Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn 10:589–606

    Article  CAS  PubMed  Google Scholar 

  34. Bustamante C, Vesenka J, Tang CL et al (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26

    Article  CAS  PubMed  Google Scholar 

  35. Brack C (1981) DNA electron microscopy. CRC Crit Rev Biochem 10:113–169

    Article  CAS  PubMed  Google Scholar 

  36. Thundat T, Allison DP, Warmack RJ et al (1992) Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc 6:911–918

    CAS  PubMed  Google Scholar 

  37. Hansma HG, Vesenka J, Siegerist C et al (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256:1180–1184

    Article  CAS  PubMed  Google Scholar 

  38. Bezanilla M, Manne S, Laney DE et al (1995) Adsorption of DNA to Mica, silylated mica, and minerals: characterization by Atomic Force Microscopy. Langmuir 11:655–659

    Article  CAS  Google Scholar 

  39. Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429

    Article  CAS  PubMed  Google Scholar 

  40. Bustamante C, Rivetti C, Keller DJ (1997) Scanning force microscopy under aqueous solutions. Curr Opin Struct Biol 7:709–716

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Takeyasu K, Shao Z (1992) Atomic force microscopy of DNA molecules. FEBS Lett 301:173–176

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Tamm LK, Tillack TW et al (1993) New approach for atomic force microscopy of membrane proteins. The imaging of cholera toxin. J Mol Biol 229:286–290

    Article  CAS  PubMed  Google Scholar 

  43. Lyubchenko YL, Gall AA, Shlyakhtenko LS (2001) Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. Methods Mol Biol 148:569–578

    CAS  PubMed  Google Scholar 

  44. Lyubchenko YL (2004) DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys 41:75–98

    Article  CAS  PubMed  Google Scholar 

  45. Lyubchenko YL, Shlyakhtenko LS, Gall AA (2009) Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods Mol Biol 543:337–351

    Article  CAS  PubMed  Google Scholar 

  46. Shlyakhtenko LS, Potaman VN, Sinden RR et al (2000) Structure and dynamics of three-way DNA junctions: atomic force microscopy studies. Nucleic Acids Res 28:3472–3477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lyubchenko YL, Shlyakhtenko LS, Potaman VP et al (2002) Global and local DNA structure and dynamics. Single molecule studies with AFM. Microsc Microanal 8:170–171

    Article  Google Scholar 

  48. Yodh JG, Woodbury N, Shlyakhtenko L et al (2002) Mapping nucleosome locations on the 208–12 by AFM provides clear evidence for cooperativity in array occupation. Biochemistry 41:3565–3574

    Article  CAS  PubMed  Google Scholar 

  49. Kato M, Hokabe S, Itakura S et al (2003) Interarm interaction of DNA cruciform forming at a short inverted repeat sequence. Biophys J 85:402–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Potaman VN, Bissler JJ, Hashem VI et al (2003) Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. J Mol Biol 326:1095–1111

    Article  CAS  PubMed  Google Scholar 

  51. Shlyakhtenko LS, Gall AA, Filonov A et al (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97:279–287

    Article  CAS  PubMed  Google Scholar 

  52. Lushnikov AY, Brown BA 2nd, Oussatcheva EA et al (2004) Interaction of the Zalpha domain of human ADAR1 with a negatively supercoiled plasmid visualized by atomic force microscopy. Nucleic Acids Res 32:4704–4712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Dahlgren PR, Karymov MA, Bankston J et al (2005) Atomic force microscopy analysis of the Huntington protein nanofibril formation. Dis Mon 51:374–385

    Article  PubMed  Google Scholar 

  54. Lonskaya I, Potaman VN, Shlyakhtenko LS et al (2005) Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J Biol Chem 280:17076–17083

    Article  CAS  PubMed  Google Scholar 

  55. Lushnikov AY, Potaman VN, Oussatcheva EA et al (2006) DNA strand arrangement within the SfiI-DNA complex: atomic force microscopy analysis. Biochemistry 45:152–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. McAllister C, Karymov MA, Kawano Y et al (2005) Protein interactions and misfolding analyzed by AFM force Spectroscopy. J Mol Biol 354:1028–1042

    Article  CAS  PubMed  Google Scholar 

  57. Kransnoslobodtsev AV, Shlyakhtenko LS, Ukraintsev E et al (2005) Nanomedicine and protein misfolding diseases. Nanomedicine 1:300–305

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Lyubchenko YL, Sherman S, Shlyakhtenko LS et al (2006) Nanoimaging for protein misfolding and related diseases. J Cell Biochem 99:53–70

    CAS  Google Scholar 

  59. Krasnoslobodtsev AV, Shlyakhtenko LS, Lyubchenko YL (2007) Probing interactions within the synaptic DNA-SfiI complex by AFM force spectroscopy. J Mol Biol 365:1407–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Shlyakhtenko LS, Yuan B, Emadi S et al (2007) Single-molecule selection and recovery of structure-specific antibodies using atomic force microscopy. Nanomedicine 3:192–197

    CAS  PubMed  Google Scholar 

  61. Lyubchenko Y, Shlyakhtenko L, Harrington R et al (1993) Atomic force microscopy of long DNA: imaging in air and under water. Proc Natl Acad Sci USA 90:2137–2140

    Article  CAS  PubMed  Google Scholar 

  62. Lyubchenko YL, Shlyakhtenko LS (1997) Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci USA 94:496–501

    Article  CAS  PubMed  Google Scholar 

  63. Lushnikov AY, Bogdanov A, Lyubchenko YL (2003) DNA recombination: holliday junctions dynamics and branch migration. J Biol Chem 278:43130–43134

    Article  CAS  PubMed  Google Scholar 

  64. Shlyakhtenko LS, Gilmore J, Kriatchko AN et al (2009) Molecular mechanism underlying RAG1/RAG2 synaptic complex formation. J Biol Chem 284:20956–20965

    Article  CAS  PubMed  Google Scholar 

  65. Vesenka J, Guthold M, Tang CL et al (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44:1243–1249

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Lyubchenko lab for their contribution to different parts of the paper. The work is supported by grants to Y.L.L. from the DOE (DE-FG02-08ER64579), NIH (P01 GM091743, 5 R01 GM096039-02), NSF (EPS—1004094), and the Nebraska Research Initiative (NRI).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lyubchenko, Y.L., Gall, A.A., Shlyakhtenko, L.S. (2014). Visualization of DNA and Protein–DNA Complexes with Atomic Force Microscopy. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics