Skip to main content

A Single-Tube Assembly of DNA Using the Transfer-PCR (TPCR) Platform

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1116))

Abstract

DNA cloning is a basic methodology employed for multiple applications in all life-science disciplines. In order to facilitate DNA cloning we developed Transfer-PCR (TPCR), a novel approach that integrates in a single tube, PCR amplification of the target DNA from an origin vector and its subsequent integration into the destination vector. TPCR can be applied for incorporation of DNA fragments into any desired position within a circular plasmid without the need for purification of the intermediate PCR product and without the use of any commercial kit. TPCR reaction is most efficient within a narrow range of primer concentrations. Adaptation of the TPCR should facilitate, simplify, and significantly reduce time and costs for DNA assembly, as well as protein engineering studies. In the current publication we describe a detailed protocol for implementation of the TPCR method for DNA assembly.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Graslund S, Nordlund P, Weigelt J et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  2. Benoit RM, Wilhelm RN, Scherer-Becker D et al (2006) An improved method for fast, robust, and seamless integration of DNA fragments into multiple plasmids. Protein Expr Purif 45:66–71

    Article  CAS  PubMed  Google Scholar 

  3. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  PubMed  Google Scholar 

  4. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gileadi O, Burgess-Brown NA, Colebrook SM et al (2008) High throughput production of recombinant human proteins for crystallography. Methods Mol Biol 426:221–246

    Article  CAS  PubMed  Google Scholar 

  6. Neilan BA, Tillett D (2002) Enzyme-free cloning of PCR products and fusion protein expression. Methods Mol Biol 192:125–132

    CAS  PubMed  Google Scholar 

  7. Chen GJ, Qiu N, Karrer C et al (2000) Restriction site-free insertion of PCR products directionally into vectors. BioTechniques 28:498–500, 504–495

    Google Scholar 

  8. Geiser M, Cebe R, Drewello D et al (2001) Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. BioTechniques 31:88–90, 92

    Google Scholar 

  9. Miyazaki K, Takenouchi M (2002) Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. BioTechniques 33:1033–1034, 1036–1038

    Google Scholar 

  10. Unger T, Jacobovitch Y, Dantes A et al (2010) Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 172:34–44

    Article  CAS  PubMed  Google Scholar 

  11. van den Ent F, Lowe J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods 67:67–74

    Article  PubMed  Google Scholar 

  12. Erijman A, Dantes A, Bernheim R et al (2011) Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J Struct Biol 175:171–177

    Article  CAS  PubMed  Google Scholar 

  13. Peleg Y, Unger T (2008) Application of high-throughput methodologies to the expression of recombinant proteins in E. coli. Methods Mol Biol 426:197–208

    Article  CAS  PubMed  Google Scholar 

  14. Peleg Y, Unger T (2012) Resolving bottlenecks for recombinant protein expression in E. coli. Methods Mol Biol 800:173–186

    Article  CAS  PubMed  Google Scholar 

  15. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. J. Sussman, Prof. I. Silman, Prof. G. Schreiber, and Prof. Yigal Burstein for their continuous support throughout the study. The ISPC is supported by the Divadol Foundation. This research was supported by the ISF grant 1372/10 (J.M.S.), Deutsche Forschungsgemeinschaft grant EI 423/2-1 (J.M.S.), and the Abisch Frenkel foundation (J.M.S).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Erijman, A., Shifman, J.M., Peleg, Y. (2014). A Single-Tube Assembly of DNA Using the Transfer-PCR (TPCR) Platform. In: Valla, S., Lale, R. (eds) DNA Cloning and Assembly Methods. Methods in Molecular Biology, vol 1116. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-764-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-764-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-763-1

  • Online ISBN: 978-1-62703-764-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics