Skip to main content

HIV-1 Reverse Transcription

  • Protocol
Human Retroviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1087))

Abstract

Reverse transcription is an obligatory step in retrovirus replication in the course of which the retroviral RNA/DNA-dependent DNA polymerase (RT) copies the single-stranded positive sense RNA genome to synthesize the double-stranded viral DNA. At the same time the RT-associated RNaseH activity degrades the genomic RNA template, which has just been copied. The viral nucleocapsid protein NCp7 is an obligatory partner of RT, chaperoning synthesis of the complete viral DNA flanked by the two long-terminal repeats (LTR), required for viral DNA integration into the host genome and its expression. Here we describe assays for in vitro and ex vivo monitoring of reverse transcription and the chaperoning role of the nucleocapsid protein (NC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211

    Article  CAS  PubMed  Google Scholar 

  2. Gilboa E, Mitra SW, Goff S, Baltimore D (1979) A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93–100

    Article  CAS  PubMed  Google Scholar 

  3. Coffin JM (1990) Retroviridae and their replication. In: Fields BN, Knipe DM et al. (eds.) Virology, 2nd edn. Raven Press Ltd, New York, p 1437–1500

    Google Scholar 

  4. Coffin JM (1979) Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42:1–26

    Article  CAS  PubMed  Google Scholar 

  5. Mougel M, Houzet L, Darlix JL (2009) When is it time for reverse transcription to start and go? Retrovirology 6:24

    Article  PubMed Central  PubMed  Google Scholar 

  6. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  CAS  PubMed  Google Scholar 

  7. Mizutani S, Boettiger D, Temin HM (1970) A DNA-dependent DNA polymerase and a DNA endonuclease in virions of Rous sarcoma virus. Nature 228:424–427

    Article  CAS  PubMed  Google Scholar 

  8. Delelis O, Carayon K, Saib A, Deprez E, Mouscadet JF (2008) Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 5:114

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lewinski MK, Bushman FD (2005) Retroviral DNA integration-mechanism and consequences. Adv Genet 55:147–181

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM, Ni N, Lockett S, Pathak VK, Hu WS (2009) High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci U S A 106:13535–13540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, Sowder RC 2nd, Barsov E, Hood BL, Fisher RJ et al (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Darlix JL, Garrido JL, Morellet N, Mely Y, de Rocquigny H (2007) Properties, functions, and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus. Adv Pharmacol 55:299–346

    Article  CAS  PubMed  Google Scholar 

  13. Darlix JL, Lapadat-Tapolsky M, de Rocquigny H, Roques BP (1995) First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol 254:523–537

    Article  CAS  PubMed  Google Scholar 

  14. Iordanskiy SN, Bukrinsky MI (2009) Analysis of viral and cellular proteins in HIV-1 reverse transcription complexes by co-immunoprecipitation. Methods Mol Biol 485:121–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Levin JG, Guo J, Rouzina I, Musier-Forsyth K (2005) Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol 80: 217–286

    Article  CAS  PubMed  Google Scholar 

  16. Rein A, Henderson LE, Levin JG (1998) Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 23:297–301

    Article  CAS  PubMed  Google Scholar 

  17. Berkhout B (1996) Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol 54: 1–34

    Article  CAS  PubMed  Google Scholar 

  18. Kleiman L, Halwani R, Javanbakht H (2004) The selective packaging and annealing of primer tRNALys3 in HIV-1. Curr HIV Res 2:163–175

    Article  CAS  PubMed  Google Scholar 

  19. Molling K, Bolognesi DP, Bauer H, Busen W, Plassmann HW, Hausen P (1971) Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. Nat New Biol 234:240–243

    Article  CAS  PubMed  Google Scholar 

  20. Lener D, Tanchou V, Roques BP, Le Grice SF, Darlix JL (1998) Involvement of HIV-I nucleocapsid protein in the recruitment of reverse transcriptase into nucleoprotein complexes formed in vitro. J Biol Chem 273: 33781–33786

    Article  CAS  PubMed  Google Scholar 

  21. Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453:184–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Holmes RK, Malim MH, Bishop KN (2007) APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci 32(3):118–128

    Article  CAS  PubMed  Google Scholar 

  23. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11(11):1005–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Allain B, Lapadat TM, Berlioz C, Darlix JL (1994) Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J 13:973–981

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Tsuchihashi Z, Brown PO (1994) DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 68:5863–5870

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Godet J, de Rocquigny H, Raja C, Glasser N, Ficheux D, Darlix JL, Mely Y (2006) During the early phase of HIV-1 DNA synthesis, nucleocapsid protein directs hybridization of the TAR complementary sequences via the ends of their double-stranded stem. J Mol Biol 356:1180–1192

    Article  CAS  PubMed  Google Scholar 

  27. Auxilien S, Keith G, Le Grice SF, Darlix JL (1999) Role of post-transcriptional modifications of primer tRNALys,3 in the fidelity and efficacy of plus strand DNA transfer during HIV-1 reverse transcription. J Biol Chem 274:4412–4420

    Article  CAS  PubMed  Google Scholar 

  28. Ramalanjaona N, de Rocquigny H, Millet A, Ficheux D, Darlix JL, Mely Y (2007) Investigating the mechanism of the nucleocapsid protein chaperoning of the second strand transfer during HIV-1 DNA synthesis. J Mol Biol 374:1041–1053

    Article  CAS  PubMed  Google Scholar 

  29. Darlix JL, Vincent A, Gabus C, de Rocquigny H, Roques B (1993) Trans-activation of the 5′ to 3′ viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA. C R Acad Sci III 316(8):763–771

    CAS  PubMed  Google Scholar 

  30. Darlix JL, Godet J, Ivanyi-Nagy R, Fossé P, Mauffret O, Mély Y (2011) Flexible nature and specific functions of the HIV-1 nucleocapsid protein. J Mol Biol 410(4):565–581

    Article  CAS  PubMed  Google Scholar 

  31. Kleiman L (2002) tRNA(Lys3): the primer tRNA for reverse transcription in HIV-1. IUBMB Life 53:107–114

    Article  CAS  PubMed  Google Scholar 

  32. Klarmann GJ, Hawkins ME, Le Grice SF (2002) Uncovering the complexities of retroviral ribonuclease H reveals its potential as a therapeutic target. AIDS Rev 4:183–194

    PubMed  Google Scholar 

  33. Bampi C, Bibillo A, Wendeler M, Divita G, Gorelick RJ, Le Grice SF, Darlix JL (2006) Nucleotide excision repair and template-independent addition by HIV-1 reverse transcriptase in the presence of nucleocapsid protein. J Biol Chem 281(17):11736–11743

    Article  CAS  PubMed  Google Scholar 

  34. Buckman JS, Bosche WJ, Gorelick RJ (2003) Human immunodeficiency virus type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 77:1469–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Carteau S, Gorelick RJ, Bushman FD (1999) Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol 73:6670–6679

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Ciuffi A, Bushman FD (2006) Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet 22:388–395

    Article  CAS  PubMed  Google Scholar 

  37. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    Article  CAS  PubMed  Google Scholar 

  38. Di Santo R, Costi R, Roux A, Miele G, Crucitti GC, Iacovo A, Rosi F, Lavecchia A, Marinelli L, Di Giovanni C et al (2008) Novel quinolinonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, and biological activities. J Med Chem 51:4744–4750

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cimarelli A, Darlix JL (2002) Assembling the human immunodeficiency virus type 1. Cell Mol Life Sci 59:1166–1184

    Article  CAS  PubMed  Google Scholar 

  40. Lori F, di Marzo Veronese F, de Vico AL, Lusso P, Reitz MS Jr, Gallo RC (1992) Viral DNA carried by human immunodeficiency virus type 1 virions. J Virol 66:5067–5074

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Trono D (1992) Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol 66:4893–4900

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Houzet L, Morichaud Z, Didierlaurent L, Muriaux D, Darlix JL, Mougel M (2008) Nucleocapsid mutations turn HIV-1 into a DNA-containing virus. Nucleic Acids Res 36:2311–2319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Thomas JA, Bosche WJ, Shatzer TL, Johnson DG, Gorelick RJ (2008) Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription. J Virol 82:9318–9328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zhang H, Dornadula G, Pomerantz RJ (1996) Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenvironments: an important stage for viral infection of nondividing cells. J Virol 70:2809–2824

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A et al (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131:1059–1071

    Article  PubMed  Google Scholar 

  46. Roan NR, Greene WC (2007) A seminal finding for understanding HIV transmission. Cell 131:1044–1046

    Article  CAS  PubMed  Google Scholar 

  47. D'Souza V, Summers MF (2005) How retroviruses select their genomes. Nat Rev Microbiol 3:643–655

    Article  PubMed  Google Scholar 

  48. Onafuwa-Nuga A, Telesnitsky A (2009) The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 73:451–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhang M, Foley B, Schultz AK, Macke JP, Bulla I, Stanke M, Morgenstern B, Korber B, Leitner T (2010) The role of recombination in the emergence of a complex and dynamic HIV epidemic. Retrovirology 7:25

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bocharov G, Ford NJ, Edwards J, Breinig T, Wain-Hobson S, Meyerhans A (2005) A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J Gen Virol 86: 3109–3118

    Article  CAS  PubMed  Google Scholar 

  51. Baird HA, Gao Y, Galetto R, Lalonde M, Anthony RM, Giacomoni V, Abreha M, Destefano JJ, Negroni M, Arts EJ (2006) Influence of sequence identity and unique breakpoints on the frequency of intersubtype HIV-1 recombination. Retrovirology 3:91

    Article  PubMed Central  PubMed  Google Scholar 

  52. Hu WS, Temin HM (1990) Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci U S A 87:1556–1560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Strebel K, Khan MA (2008) APOBEC3G encapsidation into HIV-1 virions: which RNA is it? Retrovirology 5:55

    Article  PubMed Central  PubMed  Google Scholar 

  54. Malim MH (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 364(1517): 675–687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Arfi V, Lienard J, Nguyen XN, Berger G, Rigal D, Darlix JL, Cimarelli A (2009) Characterization of the behavior of functional viral genomes during the early steps of human immunodeficiency virus type 1 infection. J Virol 83:7524–7535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mbisa JL, Delviks-Frankenberry KA, Thomas JA, Gorelick RJ, Pathak VK (2009) Real-time PCR analysis of HIV-1 replication post-entry events. Methods Mol Biol 485:55–72

    Article  CAS  PubMed  Google Scholar 

  57. HIV drug resistant mutations by drug class. Stanford HIV Drug resistance database. Analyze sequence sets for proportions with Surveillance Drug Resistance Mutations (SDRMs). http://hivdb.stanford.edu (USA)

    Google Scholar 

Download references

Acknowledgments

Work in the laboratory is supported by grants from INSERM, CNRS, ANRS, EC (6th PCRDT), FINOVI, and Sidaction (France).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cimarelli, A., Darlix, JL. (2014). HIV-1 Reverse Transcription. In: Vicenzi, E., Poli, G. (eds) Human Retroviruses. Methods in Molecular Biology, vol 1087. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-670-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-670-2_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-669-6

  • Online ISBN: 978-1-62703-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics