Skip to main content

HIV-1-Based Lentiviral Vectors

  • Protocol
Human Retroviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1087))

Abstract

Numerous viral vectors have been developed for the delivery of transgenes to specific target cells. For persistent transgene expression, vectors based on retroviruses are attractive delivery vehicles because of their ability to stably integrate their DNA into the host cell genome. Initially, vectors based on simple retroviruses were the vector of choice for such applications. However, these vectors can only transduce actively dividing cells. Therefore, much interest has turned to retroviral vectors based on the lentivirus genus because of their ability to transduce both dividing and non-dividing cells. The best characterized lentiviral vectors are derived from the human immunodeficiency virus type 1 (HIV-1). This chapter describes the basic features of the HIV-1 replication cycle and the many improvements reported for the lentiviral vector systems to increase the safety and efficiency. We also provide practical information on the production of HIV-1 derived lentiviral vectors, the cell transduction protocol and a method to determine the transduction titers of a lentiviral vector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ailles LE, Naldini L (2002) HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 261:31–52

    CAS  PubMed  Google Scholar 

  2. Gilbert JR, Wong-Staal F (2001) HIV-2 and SIV vector systems. Somat Cell Mol Genet 26(1–6):83–98

    Article  CAS  PubMed  Google Scholar 

  3. Gonda MA, Wong-Staal F, Gallo RC, Clements JE, Narayan O, Gilden RV (1985) Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227(4683):173–177

    Article  CAS  PubMed  Google Scholar 

  4. Coffin JM (1996) Retroviridae: the viruses and their replication. In: Knipe DM, Roizman B, Howley PM, Monath TP, Straus SE, Chanock RM et al (eds) Fields virology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 1767–1847

    Google Scholar 

  5. Luciw P (1996) Human immunodeficiency viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Virology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, NY

    Google Scholar 

  6. Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 263–334

    Google Scholar 

  7. Vogt VM (1997) Retroviral virions and genomes. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, New York, pp 27–69

    Google Scholar 

  8. Brown PO (1990) Integration of retroviral DNA. Curr Top Microbiol Immunol 157:19–48

    CAS  PubMed  Google Scholar 

  9. Coffin JM (1990) Retroviridae and their replication. In: Fields BN, Knipe DM (eds) Virology, 2nd edn. Raven, New York, NY, pp 1437–1500

    Google Scholar 

  10. Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 121–160

    Google Scholar 

  11. Jeang KT, Chang Y, Berkhout B, Hammarskjold ML, Rekosh D (1991) Regulation of HIV expression: mechanisms of action of Tat and Rev. [Review]. AIDS 5(Suppl 2):S3–S14

    Article  PubMed  Google Scholar 

  12. Gait MJ, Karn J (1993) RNA recognition by the human immunodeficiency virus Tat and Rev proteins. Trends Biochem Sci 18(7):255–259

    Article  CAS  PubMed  Google Scholar 

  13. Kjems J, Askjaer P (2000) Rev protein and its cellular partners. Adv Pharmacol 48:251–298

    Article  CAS  PubMed  Google Scholar 

  14. Hope TJ (1999) The ins and outs of HIV Rev. Arch Biochem Biophys 365(2):186–191

    Article  CAS  PubMed  Google Scholar 

  15. Anderson JL, Hope TJ (2004) HIV accessory proteins and surviving the host cell. Curr HIV/AIDS Rep 1(1):47–53

    Article  PubMed  Google Scholar 

  16. Emerman M, Malim MH (1998) HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280(5371):1880–1884

    Article  CAS  PubMed  Google Scholar 

  17. Berkhout B (1996) Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol 54:1–34

    Article  CAS  PubMed  Google Scholar 

  18. Garcia JA, Gaynor RB (1994) The human immunodeficiency virus type-1 long terminal repeat and its role in gene expression. [Review]. Prog Nucleic Acid Res Mol Biol 49:157–196

    Article  CAS  PubMed  Google Scholar 

  19. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Iwakuma T, Cui Y, Chang L-J (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261:120–132

    Article  CAS  PubMed  Google Scholar 

  22. Bukovsky AA, Song JP, Naldini L (1999) Interaction of human immunodeficiency virus-derived vectors with wild- type virus in transduced cells. J Virol 73(8):7087–7092

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Charneau P, Mirambeau G, Roux P, Paulous S, Buc H, Clavel F (1994) HIV-1 reverse transcription. A termination step at the center of the genome. J Mol Biol 241(5):651–662

    Article  CAS  PubMed  Google Scholar 

  24. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101(2):173–185

    Article  CAS  PubMed  Google Scholar 

  25. Dardalhon V, Herpers B, Noraz N et al (2001) Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene Ther 8(3):190–198

    Article  CAS  PubMed  Google Scholar 

  26. Patzel V, Sczakiel G (1997) The hepatitis B virus posttranscriptional regulatory element contains a highly stable RNA secondary structure. Biochem Biophys Res Commun 231(3):864–867

    Article  CAS  PubMed  Google Scholar 

  27. Donello JE, Loeb JE, Hope TJ (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72(6):5085–5092

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Deglon N, Tseng JL, Bensadoun JC et al (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11(1):179–190

    Article  CAS  PubMed  Google Scholar 

  29. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Higashimoto T, Urbinati F, Perumbeti A et al (2007) The woodchuck hepatitis virus post-transcriptional regulatory element reduces readthrough transcription from retroviral vectors. Gene Ther 14(17):1298–1304

    Article  CAS  PubMed  Google Scholar 

  31. Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18(3):477–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ter Brake O, Berkhout B (2007) Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 9(9):743–750

    Article  PubMed  Google Scholar 

  33. Liu YP, Berkhout B (2009) Lentiviral delivery of RNAi effectors against HIV-1. Curr Top Med Chem 9(12):1130–1143

    Article  CAS  PubMed  Google Scholar 

  34. Liu YP, Vink MA, Westerink JT et al (2010) Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA 16:1328–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Desrosiers RC, Lifson JD, Gibbs JS et al (1998) Identification of highly attenuated mutants of simian immunodeficiency virus. J Virol 72:1431–1437

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74(10):4839–4852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Seppen J, Rijnberg M, Cooreman MP, Oude Elferink RP (2002) Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J Hepatol 36(4):459–465

    Article  CAS  PubMed  Google Scholar 

  38. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Jeeninga RE, Hoogenkamp M, Armand-Ugon M, de Baar M, Verhoef K, Berkhout B (2000) Functional differences between the long terminal repeat transcriptional promoters of HIV-1 subtypes A through G. J Virol 74:3740–3751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280(1):124–131

    Article  CAS  PubMed  Google Scholar 

  41. Kwon YJ, Hung G, Anderson WF, Peng CA, Yu H (2003) Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 77(10):5712–5720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9(17):1155–1162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, Y.P., Berkhout, B. (2014). HIV-1-Based Lentiviral Vectors. In: Vicenzi, E., Poli, G. (eds) Human Retroviruses. Methods in Molecular Biology, vol 1087. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-670-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-670-2_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-669-6

  • Online ISBN: 978-1-62703-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics