Skip to main content

Analysis of Compartmentalized cAMP: A Method to Compare Signals from Differently Targeted FRET Reporters

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1071))

Abstract

Förster resonance energy transfer (FRET)-based reporters are important tools to study the spatiotemporal compartmentalization of cyclic adenosine monophosphate (cAMP) in living cells. To increase the spatial resolution of cAMP detection, new reporters with specific intracellular targeting have been developed. Therefore it has become critical to be able to appropriately compare the signals revealed by the different sensors. Here we illustrate a protocol to calibrate the response detected by different targeted FRET reporters involving the generation of a dose–response curve to the cAMP raising agent forskolin. This method represents a general tool for the accurate analysis and interpretation of intracellular cAMP changes detected at the level of different subcellular compartments.

Alessandra Stangherlin and Andreas Koschinski contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Clegg R (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy, vol 137. Wilely, New York, pp 179–251

    Google Scholar 

  2. Zaccolo M, De Giorgi F, Cho CY et al (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    Article  PubMed  CAS  Google Scholar 

  3. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  PubMed  CAS  Google Scholar 

  4. Terrin A, Di Benedetto G, Pertegato V et al (2006) PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175:441–451

    Article  PubMed  CAS  Google Scholar 

  5. Di Benedetto G, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844

    Article  PubMed  Google Scholar 

  6. Monterisi S, Favia M, Guerra L et al (2012) CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity. J Cell Sci 125(Pt 5):1106–1117

    Article  PubMed  CAS  Google Scholar 

  7. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signalling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101:16513–16518

    Article  PubMed  CAS  Google Scholar 

  8. Sin YY, Edwards HV, Li X et al (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50:872–883

    Article  PubMed  CAS  Google Scholar 

  9. Herget S, Lohse MJ, Nikolaev VO (2008) Real-time monitoring of phosphodiesterase inhibition in intact cells. Cell Signal 20:1423–1431

    Article  PubMed  CAS  Google Scholar 

  10. Mohamed TM, Oceandy D, Zi M et al (2011) Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286:41520–41529

    Article  PubMed  CAS  Google Scholar 

  11. Matthiesen K, Nielsen J (2011) Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization. PLoS One 6:e24392

    Article  PubMed  CAS  Google Scholar 

  12. Wachten S, Masada N, Ayling LJ et al (2010) Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells. J Cell Sci 123:95–106

    Article  PubMed  CAS  Google Scholar 

  13. Castro LR, Gervasi N, Guiot E et al (2010) Type 4 phosphodiesterase plays different integrating roles in different cellular domains in pyramidal cortical neurons. J Neurosci 30:6143–6151

    Article  PubMed  CAS  Google Scholar 

  14. Nikolaev VO, Bunemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  PubMed  CAS  Google Scholar 

  15. Gesellchen F, Stangherlin A, Surdo N et al (2011) Measuring spatiotemporal dynamics of cyclic AMP signaling in real-time using FRET-based biosensors. Methods Mol Biol 746:297–316

    Article  PubMed  CAS  Google Scholar 

  16. Borner S, Schwede F, Schlipp A et al (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438

    Article  PubMed  Google Scholar 

  17. Berrera M, Dodoni G, Monterisi S et al (2008) A toolkit for real-time detection of cAMP: insights into compartmentalized signaling. Handb Exp Pharmacol 186:285–298

    Article  PubMed  CAS  Google Scholar 

  18. Evellin S, Mongillo M, Terrin A et al (2004) Measuring dynamic changes in cAMP using fluorescence resonance energy transfer. Methods Mol Biol 284:259–270

    PubMed  CAS  Google Scholar 

  19. Zhang J, Ma Y, Taylor SS et al (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci U S A 98:14997–15002

    Article  PubMed  CAS  Google Scholar 

  20. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alsbetha Hulikova and Thomas Fritz for valuable discussions. The work described in this paper was supported by the British Heart Foundation (PG/07/091/23698) and the NSF–NIH CRCNS program (NIH R01 AA18060).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stangherlin, A. et al. (2014). Analysis of Compartmentalized cAMP: A Method to Compare Signals from Differently Targeted FRET Reporters. In: Zhang, J., Ni, Q., Newman, R. (eds) Fluorescent Protein-Based Biosensors. Methods in Molecular Biology, vol 1071. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-622-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-622-1_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-621-4

  • Online ISBN: 978-1-62703-622-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics