Skip to main content

The Model Legume Genomes

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1069))

Abstract

The primary model legumes to date have been Medicago truncatula and Lotus japonicus. Both species are tractable both genetically and in the greenhouse, and for both, substantial sets of tools and resources for molecular genetic research have been assembled. As sequencing costs have declined, however, additional legume genomes have been sequenced, and the funding available to crops such as soybean has enabled these to be developed to the status of genetic models in their own right. This chapter, therefore, describes a broader set of model species in the legumes, and discusses similarities and differences between the genomes sequenced to date, as well as computational resources available for various legume species. Genome structural characteristics in, for example, Medicago truncatula and Glycine max, can have large impacts on the kinds of functional genomic research that may be carried out in these species. Both of these genomes have substantial redundancy for many gene families, but the nature of the redundancy is different in the two genomes—with the redundancy typically being in the form of local gene duplications in Medicago, and in whole-genome-duplication-derived duplications in Glycine. Similar considerations (about gene environments and genome structure) will likely need to be taken into account for any model or crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54: 575–594

    Article  PubMed  Google Scholar 

  2. Cannon SB, Ilut D, Farmer AD, Maki SL, May GD, Singer SR et al (2010) Polyploidy did not predate the evolution of nodulation in all legumes. PLoS One 5:e11630

    Article  PubMed  Google Scholar 

  3. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142

    Article  PubMed  CAS  Google Scholar 

  4. Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    Article  PubMed  CAS  Google Scholar 

  5. Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC (2011) Changes in twelve homoeologous genomic regions in soybean following three rounds of polyploidy. Plant Cell 23:3129–3136

    Article  PubMed  CAS  Google Scholar 

  6. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  PubMed  CAS  Google Scholar 

  7. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS et al (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10

    Article  PubMed  Google Scholar 

  8. Cannon SB, Mitra A, Baumgarten AM, Young ND, May G (2004) The fates of segmental and tandem gene duplications in large Arabidopsis thaliana gene families. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  9. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  Google Scholar 

  10. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  11. Ashfield T, Egan AN, Pfeil BE, Chen NW, Podicheti R, Ratnaparkhe MB (2012) Evolution of a complex disease resistance gene cluster in diploid Phaseolus and tetraploid Glycine. Plant Physiol 159:336–354

    Article  PubMed  CAS  Google Scholar 

  12. Innes RW, Ameline-Torregrosa C, Ashfield T, Cannon E, Cannon SB, Chacko B et al (2008) Differential accumulation of retroelements and diversification of NB-LRR disease resistance genes in duplicated regions following polyploidy in the ancestor of soybean. Plant Physiol 148:1740–1759

    Article  PubMed  CAS  Google Scholar 

  13. Wawrzynski A, Ashfield T, Chen NW, Mammadov J, Nguyen A, Podicheti R et al (2008) Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiol 148:1760–1771

    Article  PubMed  CAS  Google Scholar 

  14. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J et al (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci USA 108:E864–E870

    Article  PubMed  CAS  Google Scholar 

  15. Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM et al (2007) Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics 175: 1937–1944

    Article  PubMed  CAS  Google Scholar 

  16. Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M et al (2011) Translational genomics in Legumes allowed placing in silico 5460 unigenes on the Pea functional map and identified candidate genes in Pisum sativum L. G3 (Bethesda) 1:93–103

    Article  CAS  Google Scholar 

  17. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 274:227-274

    Article  CAS  Google Scholar 

  18. Jing R, Knox MR, Lee JM, Vershinin AV, Ambrose M, Ellis TH et al (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in pisum species. Genetics 171:741–752

    Article  PubMed  CAS  Google Scholar 

  19. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  20. Lewis G, Schrire B, Mackind B, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew

    Google Scholar 

  21. Cannon SB, Sato S, Tabata S, Young ND, May GD (2011) Legumes as a model plant family. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI Press, Cambridge MA, pp 348–361

    Chapter  Google Scholar 

  22. Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151: 970–977

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cannon, S.B. (2013). The Model Legume Genomes. In: Rose, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 1069. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-613-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-613-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-612-2

  • Online ISBN: 978-1-62703-613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics