Skip to main content

Peptide Release, Side-Chain Deprotection, Work-Up, and Isolation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

After having successfully synthesized a peptide, it has to be released from the solid support, unless it is being used for on-resin display. The linker and, in some cases, the cleavage mixture determine the C-terminal functionality of the released peptide. In most cases, the peptide is released with concomitant removal of side-chain protecting groups. However, some combinations of linkers and side-chain protecting groups enable a two-stage procedure, either using orthogonal chemistry or graduated labilities. Herein, we describe protocols for the release of peptides from the most commonly used linker types providing a variety of different C-terminal functionalities, including acids, amides, amines, and aldehydes. Moreover, suggestions for determination of peptide purity and for storage conditions are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  PubMed  CAS  Google Scholar 

  2. Sheppard RC, Williams BJ (1982) Acid-labile resin linkage agents for use in solid-phase peptide-synthesis. Int J Pept Protein Res 20:451–454

    Article  PubMed  CAS  Google Scholar 

  3. Rink H (1987) Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett 28:3787–3790

    Article  CAS  Google Scholar 

  4. Mergler M, Tanner R, Gosteli J, Grogg P (1988) Peptide synthesis by a combination of solid-phase and solution methods I: a new very acid-labile anchor group for the solid phase synthesis of fully protected fragments. Tetrahedron Lett 29:4005–4008

    Article  CAS  Google Scholar 

  5. Boas U, Brask J, Jensen KJ (2009) Backbone amide linker in solid-phase synthesis. Chem Rev 109:2092–2118

    Article  PubMed  CAS  Google Scholar 

  6. Boas U, Brask J, Christensen JB, Jensen KJ (2002) The ortho backbone amide linker (o-BAL) is an easily prepared and highly acid-labile handle for solid-phase synthesis. J Comb Chem 4:223–228

    Article  PubMed  CAS  Google Scholar 

  7. Barlos K, Gatos D, Kapolos S, Papaphotiu G, Schäfer W, Wenqing Y (1989) Veresterung von partiell geschützten peptid-fragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15-gastrin I. Tetrahedron Lett 30:3947–3950

    Article  CAS  Google Scholar 

  8. Barlos K, Gatos D, Kutsogianni S, Papaphotiou G, Poulos C, Tsegenidis T (1991) Solid-phase synthesis of partially protected and free peptides containing disulfide bonds by simultaneous cysteine oxidation-release from 2-chlorotrityl resin. Int J Pept Protein Res 38:562–568

    Article  PubMed  CAS  Google Scholar 

  9. Eleftheriou S, Gatos D, Panagopoulos A, Stathopoulos S, Barlos K (1999) Attachment of histidine, histamine and urocanic acid to resins of the trityl-type. Tetrahedron Lett 40:2825–2828

    Article  CAS  Google Scholar 

  10. Guillaumie F, Kappel JC, Kelly NM, Barany G, Jensen KJ (2000) Solid-phase synthesis of C-terminal peptide aldehydes from amino acetals anchored to a backbone amide linker (BAL) handle. Tetrahedron Lett 41:6131–6135

    Article  CAS  Google Scholar 

  11. Brask J, Albericio F, Jensen KJ (2003) Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters. Org Lett 5:2951–2953

    Article  PubMed  CAS  Google Scholar 

  12. Sieber P (1987) A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method. Tetrahedron Lett 28:2107–2110

    Article  CAS  Google Scholar 

  13. Mende F, Seitz O (2011) 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Angew Chem Int Ed 50:1232–1240

    Article  CAS  Google Scholar 

  14. Guillier F, Orain D, Bradley M (2000) Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 100:2091–2158

    Article  PubMed  CAS  Google Scholar 

  15. Semenov AN, Gordeev KY (1995) A novel oxidation-labile linker for solid-phase peptide synthesis. Int J Pept Protein Res 45:303–304

    Article  PubMed  CAS  Google Scholar 

  16. Millington CR, Quarrell R, Lowe G (1998) Aryl hydrazides as linkers for solid phase synthesis which are cleavable under mild oxidative conditions. Tetrahedron Lett 39:7201–7204

    Article  CAS  Google Scholar 

  17. Atherton E, Gait MJ, Sheppard RC, Williams BJ (1979) The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorg Chem 8:351–370

    Article  CAS  Google Scholar 

  18. Story SC, Aldrich JV (1992) Preparation of protected peptide amides using the Fmoc protocol—comparison of resins for solid-phase synthesis. Int J Pept Protein Res 39:87–92

    Article  PubMed  CAS  Google Scholar 

  19. Jullian M, Hernandez A, Maurras A, Puget K, Amblard M, Martinez J, Subra G (2009) N-terminus FITC labeling of peptides on solid support: the truth behind the spacer. Tetrahedron Lett 50:260–263

    Article  CAS  Google Scholar 

  20. Abd-Elgaliel WR, Gallazzi F, Lever SZ (2007) Total solid-phase synthesis of bombesin analogs with different functional groups at the C-terminus. J Pept Sci 13:487–492

    Article  PubMed  CAS  Google Scholar 

  21. Minkwitz R, Meldal M (2005) Application of a photolabile backbone amide linker for cleavage of internal amides in the synthesis towards melanocortin subtype-4 agonists. QSAR Comb Sci 24:343–353

    Article  CAS  Google Scholar 

  22. Hutchins SM, Chapman KT (1996) Fischer indole synthesis on a solid support. Tetrahedron Lett 37:4869–4872

    Article  CAS  Google Scholar 

  23. Brunsveld L, Kuhlmann J, Waldmann H (2006) Synthesis of palmitoylated Ras-peptides and -proteins. Methods 40:151–165

    Article  PubMed  CAS  Google Scholar 

  24. Beck W, Jung G (1994) Convenient reduction of S-oxides in synthetic peptides, lipopeptides and peptide libraries. Lett Pept Sci 1:31–37

    Article  CAS  Google Scholar 

  25. Malik L, Tofteng AP, Pedersen SL, Sørensen KK, Jensen KJ (2010) Automated ‘X-Y’ robot for peptide synthesis with microwave heating: application to difficult peptide sequences and protein domains. J Pept Sci 16:506–512

    PubMed  CAS  Google Scholar 

  26. Teixeira A, Benckhuijsen WE, de Koning PE, Valentijn ARPM, Drijfhout JW (2002) The use of DODT as a non-malodorous scavenger in fmoc-based peptide synthesis. Protein Pept Lett 9:379–385

    Article  PubMed  CAS  Google Scholar 

  27. Guy CA, Fields GB (1997) Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. In: Solid-phase peptide synthesis, San Diego, 289, Elsevier Academic, pp 67–83

    Google Scholar 

  28. Banerjee J, Hanson AJ, Muhonen WW, Shabb JB, Mallik S (2010) Microwave-assisted synthesis of triple-helical, collagen-mimetic lipopeptides. Nat Protoc 5:39–50

    Article  PubMed  CAS  Google Scholar 

  29. Harris P, Williams G, Shepherd P, Brimble M (2008) The synthesis of phosphopeptides using microwave-assisted solid phase peptide synthesis. Int J Pept Res Ther 14:387–392

    Article  CAS  Google Scholar 

  30. Brandt M, Gammeltoft S, Jensen K (2006) Microwave heating for solid-phase peptide synthesis: general evaluation and application to 15-mer phosphopeptides. Int J Pept Res Ther 12:349–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Pedersen, S.L., Jensen, K.J. (2013). Peptide Release, Side-Chain Deprotection, Work-Up, and Isolation. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics