Skip to main content

Solid-Phase Synthesis of Phosphopeptides

  • Protocol
  • First Online:
Peptide Synthesis and Applications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1047))

Abstract

Phosphopeptides are generally prepared by incorporation of suitable, protected phosphoamino acid derivatives during peptide synthesis using routine coupling protocols. The feasibility of chemical synthesis of phosphorylated peptides by Fmoc-SPPS was greatly enhanced by the introduction of the monobenzyl protecting group for the phosphate group. This minimized β-elimination of the phosphate group and made Fmoc-based synthesis of phosphopeptides the preferred synthesis strategy. Described here is our strategy for the synthesis of phosphopeptides attached to the solid support PEGA via a backbone amide linker type. This linker allows removal of side-chain protection groups without releasing the phosphopeptide from the solid support, thus enabling solid-phase-based pull-down reactions and peptide-protein interaction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  PubMed  CAS  Google Scholar 

  2. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1918

    Article  PubMed  CAS  Google Scholar 

  3. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  4. Search performed 2012/12/12

    Google Scholar 

  5. Leitner A, Lindner W (2009) Chemical tagging strategies for mass spectrometry-based phospho-proteomics. Methods Mol Biol 527:229–243

    Article  PubMed  CAS  Google Scholar 

  6. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  PubMed  CAS  Google Scholar 

  7. Wisniewski JR (2011) Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids 41:223–233

    Article  PubMed  CAS  Google Scholar 

  8. McMurray JS, Coleman DR IV, Wang W, Campbell ML (2001) The synthesis of phosphopeptides. Biopolymers 60:3–31

    Article  PubMed  CAS  Google Scholar 

  9. Sun T, Campbell M, Gordon W, Arlinghaus RB (2001) Preparation and application of antibodies to phosphoamino acid sequences. Biopolymers 60:61–75

    Article  PubMed  CAS  Google Scholar 

  10. Brumbaugh K, Johnson W, Liao W-C, Lin M-S, Houchins JP, Cooper J, Stoesz S, Campos-Gonzalez R (2011) Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 717:3–43

    Article  PubMed  CAS  Google Scholar 

  11. Teraishi T, Miura K (2009) Toward an in situ phospho-protein atlas: phospho- and site-specific antibody-based spatio-temporally systematized detection of phosphorylated proteins in vivo. Bioessays 31:831–842

    Article  PubMed  CAS  Google Scholar 

  12. Yamaguchi H, Minopoli G, Demidov ON, Chatterjee DK, Anderson CW, Durell SR, Appella E (2005) Substrate specificity of the human protein phosphatase 2C delta Wip1. Biochemistry 44:5285–5294

    Article  PubMed  CAS  Google Scholar 

  13. Hojlys-Larsen KB, Sorensen KK, Jensen KJ, Gammeltoft S (2012) Probing protein phosphatase substrate binding: affinity pull-down of ILKAP phosphatase 2C with phosphopeptides. Mol Biosyst 8:1452–1460

    Article  PubMed  CAS  Google Scholar 

  14. Brandt M, Madsen JC, Bunkenborg J, Jensen ON, Gammeltoft S, Jensen KJ (2006) On-bead chemical synthesis and display of phosphopeptides for affinity pull-down proteomics. Chembiochem 7:623–630

    Article  PubMed  CAS  Google Scholar 

  15. Larsen K, Brandt M, Sørensen KK, Gammeltoft S, Jensen KJ (2007) Solid-phase peptide synthesis as an enabling tool for proteomics. Chim Oggi 25:34–36

    Google Scholar 

  16. Ottinger EA, Shekels LL, Bernlohr DA, Barany G (1993) Synthesis of phosphotyrosine-containing peptides and their use as substrates for protein tyrosine phosphatases. Biochemistry 32:4354–4361

    Article  PubMed  CAS  Google Scholar 

  17. Otaka A, Miyoshi K, Kaneko M, Tamamura H, Fujii N, Nomizu M, Burke TR, Roller PP (1995) Development of efficient 2-step deprotection methodology for dimethyl-protected phosphoamino acid-containing peptide resins and its application to the practical synthesis of phosphopeptides. J Org Chem 60:3967–3974

    Article  CAS  Google Scholar 

  18. Ueno Y, Suda F, Taya Y, Noyori R, Hayakawa Y, Hata T (1995) Solid-phase synthesis of peptides containing o-phosphoryl serine and o-phosphoryl threonine using allyl group for phosphate protection. Bioorg Med Chem Lett 5:823–826

    Article  CAS  Google Scholar 

  19. Hubalek F, Edmondson DE, Pohl J (2002) Synthesis and characterization of a collagen model delta-O-phosphohydroxylysine-containing peptide. Anal Biochem 306:124–134

    Article  PubMed  CAS  Google Scholar 

  20. Kupihar Z, Varadi G, Monostori E, Toth GK (2000) Preparation of an asymmetrically protected phosphoramidite and its application in solid-phase synthesis of phosphopeptides. Tetrahedron Lett 41:4457–4461

    Article  CAS  Google Scholar 

  21. Johnson T, Packman LC, Hyde CB, Owen D, Quibell M (1996) Backbone protection and its application to the synthesis of a difficult phosphopeptide sequence. J Chem Soc 1:719–728

    Google Scholar 

  22. Wakamiya T, Saruta K, Yasuoka J-i, Kusumoto S (1994) An efficient procedure for solid-phase synthesis of phosphopeptides by the Fmoc strategy. Chem Lett 23:1099–1102

    Article  Google Scholar 

  23. Wakamiya T, Togashi R, Nishida T, Saruta K, Yasuoka J, Kusumoto S, Aimoto S, Kumagaye KY, Nakajima K, Nagata K (1997) Synthetic study of phosphopeptides related to heat shock protein HSP27. Bioorg Med Chem 5: 135–145

    Article  PubMed  CAS  Google Scholar 

  24. Bourne GT, Meutermans WDF, Alewood PF, McGeary RP, Scanlon M, Watson AA, Smythe ML (1999) A backbone linker for BOC-based peptide synthesis and on-resin cyclization: synthesis of stylostatin 1. J Org Chem 64:3095–3101

    Article  PubMed  CAS  Google Scholar 

  25. Boas U, Brask J, Jensen KJ (2009) Backbone amide linker in solid-phase synthesis. Chem Rev 109:2092–2118

    Article  PubMed  CAS  Google Scholar 

  26. Meldal M (1992) PEGA—a flow stable polyethylene-glycol dimethyl acrylamide copolymer for solid-phase synthesis. Tetrahedron Lett 33:3077

    Article  CAS  Google Scholar 

  27. Auzanneau FI, Christensen MK, Harris SL, Meldal M, Pinto BM (1998) Synthesis and characterization of polyethylene glycol polyacrylamide copolymer (PEGA) resins containing carbohydrate ligands. Evaluation as supports for affinity chromatography. Can J Chem 76:1109

    Article  CAS  Google Scholar 

  28. Pedersen SL, Tofteng AP, Malik L, Jensen KJ (2012) Microwave heating in solid-phase peptide synthesis. Chem Soc Rev 41:1826–1844

    Google Scholar 

  29. Brandt M, Gammeltoft S, Jensen KJ (2006) Microwave heating for solid-phase peptide synthesis: general evaluation and application to 15-mer phosphopeptides. Int J Pept Res Ther 12:349–357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Højlys-Larsen, K.B., Jensen, K.J. (2013). Solid-Phase Synthesis of Phosphopeptides. In: Jensen, K., Tofteng Shelton, P., Pedersen, S. (eds) Peptide Synthesis and Applications. Methods in Molecular Biology, vol 1047. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-544-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-543-9

  • Online ISBN: 978-1-62703-544-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics