Skip to main content

self-assembling GFP: A Versatile Tool for Plant (Membrane) Protein Analyses

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

Abstract

The investigation of cellular processes on the molecular level is important to understand the functional network within plant cells. self-assembling GFP has evolved to be a versatile tool for (membrane) protein analyses. Based on the autocatalytical reassembling property of the nonfluorescent strands 1–10 and 11, protein distribution and membrane protein topology can be analyzed in vivo. Here, we provide basic protocols to determine membrane protein topology in Arabidopsis thaliana protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  PubMed  CAS  Google Scholar 

  2. Remington SJ (2011) Green fluorescent protein: a perspective. Protein Sci 20:1509–1519

    Article  PubMed  CAS  Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  4. Thomas JD, Daniel RA, Errington J et al (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39:47–53

    Article  PubMed  CAS  Google Scholar 

  5. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  PubMed  CAS  Google Scholar 

  6. van Dooren GG, Tomova C, Agrawal S et al (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci USA 105:13574–13579

    Article  PubMed  Google Scholar 

  7. Fiebiger E, Story C, Ploegh HL et al (2002) Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J 21:1041–1053

    Article  PubMed  CAS  Google Scholar 

  8. Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19:338–343

    Article  PubMed  CAS  Google Scholar 

  9. Ormo M, Cubitt AB, Kallio K et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    Article  PubMed  CAS  Google Scholar 

  10. Cody CW, Prasher DC, Westler WM et al (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32: 1212–1218

    Article  PubMed  CAS  Google Scholar 

  11. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  PubMed  CAS  Google Scholar 

  12. Machettira AB, Gross LE, Sommer MS et al (2011) The localization of Tic20 proteins in Arabidopsis thaliana is not restricted to the inner envelope membrane of chloroplasts. Plant Mol Biol 77:381–390

    Article  PubMed  CAS  Google Scholar 

  13. Sommer MS, Daum B, Gross LE et al (2011) Chloroplast Omp85 proteins change orientation during evolution. Proc Natl Acad Sci USA 108:13841–13846

    Article  PubMed  CAS  Google Scholar 

  14. Ulrich T, Gross LE, Sommer MS et al (2012) Chloroplast beta-barrel proteins are assembled into the mitochondrial outer membrane in a process that depends on the TOM and TOB complexes. J Biol Chem 287:27467–27479

    Article  PubMed  CAS  Google Scholar 

  15. Kaddoum L, Magdeleine E, Waldo GS et al (2010) One-step split GFP staining for sensitive protein detection and localization in mammalian cells. Biotechniques 49:727–728, 730, 732 passim

    Google Scholar 

  16. Hempel F, Bullmann L, Lau J et al (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790

    Article  PubMed  CAS  Google Scholar 

  17. Bullmann L, Haarmann R, Mirus O et al (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856

    Article  PubMed  CAS  Google Scholar 

  18. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara F, Listwan P, Waldo GS et al (2011) Fluorescent labeling of antibody fragments using split GFP. PLoS One 6:e25727

    Article  PubMed  CAS  Google Scholar 

  20. Chaudhary A, Ganguly K, Cabantous S et al (2012) The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417:299–304

    Article  PubMed  CAS  Google Scholar 

  21. Chun W, Waldo GS, Johnson GV (2011) Split GFP complementation assay for quantitative measurement of tau aggregation in situ. Methods Mol Biol 670:109–123

    Article  PubMed  CAS  Google Scholar 

  22. von Arnim AG, Deng XW, Stacey MG (1998) Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221:35–43

    Article  Google Scholar 

  23. Gross LE, Machettira AB, Rudolf M et al (2011) GFP-based in vivo protein topology determination in plant protoplasts. J Endocytobiosis Cell Res 21:89–97

    Google Scholar 

  24. Kobayashi K, Nakamura Y, Ohta H (2009) Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiol Biochem 47:518–525

    Article  PubMed  CAS  Google Scholar 

  25. Sun Q, Zybailov B, Majeran W et al (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  PubMed  CAS  Google Scholar 

  26. Johnson TL, Olsen LJ (2003) Import of the peroxisomal targeting signal type 2 protein 3-ketoacyl-coenzyme a thiolase into glyoxysomes. Plant Physiol 133:1991–1999

    Article  PubMed  CAS  Google Scholar 

  27. Bionda T, Tillmann B, Simm S et al (2010) Chloroplast import signals: the length requirement for translocation in vitro and in vivo. J Mol Biol 402:510–523

    Article  PubMed  CAS  Google Scholar 

  28. Clausen C, Ilkavets I, Thomson R et al (2004) Intracellular localization of VDAC proteins in plants. Planta 220:30–37

    Article  PubMed  CAS  Google Scholar 

  29. Geissler A, Chacinska A, Truscott KN et al (2002) The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111:507–518

    Article  PubMed  CAS  Google Scholar 

  30. Jansch L, Kruft V, Schmitz UK et al (1996) New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J 9: 357–368

    Article  PubMed  CAS  Google Scholar 

  31. Salomon M, Fischer K, Flugge UI et al (1990) Sequence analysis and protein import studies of an outer chloroplast envelope polypeptide. Proc Natl Acad Sci USA 87: 5778–5782

    Article  PubMed  CAS  Google Scholar 

  32. Schleiff E, Tien R, Salomon M et al (2001) Lipid composition of outer leaflet of chloroplast outer envelope determines topology of OEP7. Mol Biol Cell 12:4090–4102

    Article  PubMed  CAS  Google Scholar 

  33. Goetze TA, Philippar K, Ilkavets I et al (2006) OEP37 is a new member of the chloroplast outer membrane ion channels. J Biol Chem 281:17989–17998

    Article  PubMed  CAS  Google Scholar 

  34. Schleiff E, Eichacker LA, Eckart K et al (2003) Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope. Protein Sci 12:748–759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Geoffrey S. Waldo (Los Alamos National Laboratory, Los Alamos, NM) for providing templates for the self-assembling GFP. This work was supported by Deutsche Forschungsgemeinschaft (SFB807 P17).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wiesemann, K., Groß, L.E., Sommer, M., Schleiff, E., Sommer, M.S. (2013). self-assembling GFP: A Versatile Tool for Plant (Membrane) Protein Analyses. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics