Skip to main content

Hierarchical Representation of Supersecondary Structures Using a Graph-Theoretical Approach

  • Protocol
  • First Online:
  • 1494 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 932))

Abstract

The unique representation of proteins becomes more and more important with the growing number of known protein structure data. Graph-theory provides many methods not only for the description but also for comparison and classification of protein structures. Here, we describe a graph-theoretical modeling approach of the protein supersecondary structure. The resulting linear notations are intuitive and can be used to find common substructures very fast and easily. We illustrate the necessary definitions by biological examples and discuss the representation of various supersecondary structure motifs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bernstein FC, Koetzle TF, Williams GJ et al (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  2. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucl Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  3. Murzin AG, Brenner SE, Hubbard T et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  4. Orengo CA, Michie AD, Jones DT et al (1997) CATH: a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  PubMed  CAS  Google Scholar 

  5. May P, Kreuchwig A, Steinke T et al (2010) PTGL: a database for secondary structure-based protein topologies. Nucl Acids Res 38:D326–330

    Article  PubMed  CAS  Google Scholar 

  6. Frishman D, Argos P (1995) Knowledge-based secondary structure assignment. Proteins 23:566–579

    Article  PubMed  CAS  Google Scholar 

  7. Richards FM, Kundrot CE (1988) Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure. Proteins 3:71–84

    Article  PubMed  CAS  Google Scholar 

  8. Sklenar H, Etchebest C, Lavery R (1989) Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins 6:46–60

    Article  PubMed  CAS  Google Scholar 

  9. Cubellis MV, Cailliez F, Lovell SC (2005) Secondary structure assignment that accurately reflects physical and evolutionary characteristics. BMC Bioinform 6(Suppl 4):S8

    Article  Google Scholar 

  10. Taylor WR (2001) Defining linear segments in protein structure. J Mol Biol 310:1135–1150

    Article  PubMed  CAS  Google Scholar 

  11. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–637

    Article  PubMed  CAS  Google Scholar 

  12. Koch I, Lengauer T (1997) Detection of distant structural similarities in a set of proteins using a fast graph-based method. In proceedings of 5th international conference on intelligent systems for molecular biology, p 167–178

    Google Scholar 

  13. Koch I, Lengauer T, Wanke E (1996) An algorithm for finding maximal common sub-topologies in a set of protein structures. J Comp Biol 3:289–306

    Article  CAS  Google Scholar 

  14. Bentley GA, Boulot G, Karjalainen K et al (1995) Crystal structure of the beta chain of a T cell antigen receptor. Science 267:1984–1987

    Article  PubMed  CAS  Google Scholar 

  15. Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem 34:167–339

    Article  PubMed  CAS  Google Scholar 

  16. Richardson JS (1977) Beta-sheet topology and the relatedness of proteins. Nature 268:495–500

    Article  PubMed  CAS  Google Scholar 

  17. Koch I (1998) Ein graphentheoretischer Ansatz zum paarweisen und multiplen Vergleich von Proteinstrukturen. (in German) Wissenschaft und Technik Verlag Berlin

    Google Scholar 

  18. Brown NR, Noble ME, Lawrie AM et al (1999) Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem 274:8746–8756

    Article  PubMed  CAS  Google Scholar 

  19. Kreuchwig A (2007) Development and comparing investigations of search patters for topological protein structure motifs using graph-theory (in German). Bachelor’s Thesis at Free University Berlin

    Google Scholar 

  20. Egloff M-P, Uppenberg J, Haalck L et al (2001) Crystal structure of Maltose phosphorylase from Lactobacillus Brevis: unexpected evolutionary relationship with Glucoamylases. Structure 9:689–697

    Article  PubMed  CAS  Google Scholar 

  21. Bianchet MA, Hullihen J, Pedersen PL et al (1998) The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sci USA 95:11065–11070

    Article  PubMed  CAS  Google Scholar 

  22. Gawronski-Salerno J, Freymann DM (2007) Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J Struct Biol 158:122–128

    Article  PubMed  CAS  Google Scholar 

  23. Pylypenko O, Rak A, Reents R et al (2003) Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase. Mol Cell 11:483–494

    Article  PubMed  CAS  Google Scholar 

  24. Eads JC, Ozturk D, Wexler TB et al (1997) A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure 5:47–58

    Article  PubMed  CAS  Google Scholar 

  25. Smith RD (1999) Correlations between bound N-alkyl isocyanide orientations and pathways for ligand binding in recombinant myoglobins. Thesis, Rice.

    Google Scholar 

  26. Bianchetti CM, Blouin GC, Bitto E et al (2010) The structure and NO binding properties of the nitrophorin-like heme-binding protein from Arabidopsis thaliana gene locus At1g79260.1. Proteins 78:917–931

    Article  PubMed  CAS  Google Scholar 

  27. Hohoff C, Borchers T, Rustow B et al (1999) Expression, purification, and crystal structure determination of recombinant human ­epidermal-type fatty acid binding protein. Biochemistry 38:12229–12239

    Article  PubMed  CAS  Google Scholar 

  28. Aghajari N, Feller G, Gerday C et al (1998) Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci 7:564–572

    Article  PubMed  CAS  Google Scholar 

  29. Renault L, Nassar N, Vetter I et al (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392:97–101

    Article  PubMed  CAS  Google Scholar 

  30. Gregg KJ, Finn R, Abbott DW et al (2008) Divergent modes of glycan recognition by a new family of carbohydrate-binding modules. J Biol Chem 283:12604–12613

    Article  PubMed  CAS  Google Scholar 

  31. Nagae M, Nishikawa K, Yasui N et al (2008) Structure of the F-spondin reeler domain reveals a unique beta-sandwich fold with a deformable disulfide-bonded loop. Acta Cryst D 64:1138–1145

    Article  Google Scholar 

  32. Mazza C (1997) Human type I 17beta-hydroxysteroid dehydrogenase: site directed mutagenesis and X-ray crystallography structure-function analysis. PhD Thesis at Universite Joseph Fourier

    Google Scholar 

  33. Banner DW, Bloomer A, Petsko et al (1976) Atomic coordinates for triose phosphate isomerase from chicken muscle. Biochem Biophys Res Commun 72:146155

    Google Scholar 

  34. Rao-Naik C, delaCruz W, Laplaza JM et al (1998) The rub family of ubiquitin-like proteins. Crystal structure of Arabidopsis rub1 and expression of multiple rubs in Arabidopsis. J Biol Chem 273:34976–34982

    Article  PubMed  CAS  Google Scholar 

  35. Binda C, Coda A, Aliverti A et al (1998) Structure of the mutant E92K of [2Fe-2S] ferredoxin I from Spinacia oleracea at 1.7 A resolution. Acta Cryst D 54:1353–1358

    Article  CAS  Google Scholar 

  36. Price SR, Evans PR, Nagai K (1998) Crystal structure of the spliceosomal U2B”-U2A’ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394:645–650

    Article  PubMed  CAS  Google Scholar 

  37. Lindahl M, Svensson LA, Liljas A et al (1994) Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J 13:1249–1254

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Thomas Steinke for many stimulating discussions and Norbert Dichter for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Koch, I., Kreuchwig, A., May, P. (2012). Hierarchical Representation of Supersecondary Structures Using a Graph-Theoretical Approach. In: Kister, A. (eds) Protein Supersecondary Structures. Methods in Molecular Biology, vol 932. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-065-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-065-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-064-9

  • Online ISBN: 978-1-62703-065-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics