Skip to main content

Effect of Gold Nanoparticle Conjugation on the Activity and Stability of Functional Proteins

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

Abstract

Immobilization of functional proteins such as enzymes on solid surfaces produces a variety of effects ranging from the reversal and strong inhibition to the enhancement of protein stability and function. Such effects are protein-dependent and are affected by the physical and chemical properties of the surfaces. Functional consequences of protein immobilization on the surface of gold nanoparticles (AuNPs) are protein-dependent and require thorough investigation using suitable functional tests. However, traditional approaches to making control samples, i.e., immobilized protein vs. protein in solution in absence of any nanoparticles do not provide sufficiently identical reaction conditions and complicate interpretation of the results. This report provides advice and methods for preparing AuNP-conjugated preparations generally suitable for studying the effects of immobilization on the activity and stability of different functional proteins. We use bovine catalase to illustrate our approach, but the methods are easily adaptable to any other enzyme or protein. The AuNP-immobilized enzyme showed increased stability at elevated temperatures compared to the same enzyme in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8(11):1081–1083

    Article  PubMed  CAS  Google Scholar 

  2. Neagu C, van der Werf KO, Putman CAJ et al (1994) Analysis of immunolabeled cells by atomic force microscopy, optical microscopy, and flow cytometry. J Struct Biol 112(1):32–40

    Article  PubMed  CAS  Google Scholar 

  3. Zhao W, Chiuman W, Brook MA et al (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chembiochem 8(7):727–731

    Article  PubMed  CAS  Google Scholar 

  4. Medley CD, Smith JE, Tang Z et al (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    Article  PubMed  CAS  Google Scholar 

  5. Reynolds RA III, Mirkin CA, Letsinger RL (2000) A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method. Pure Appl Chem 72(1–2):229–235

    Article  CAS  Google Scholar 

  6. Choi DH, Lee SK, Oh YK et al (2010) A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron 25(8):1999–2002

    Article  PubMed  CAS  Google Scholar 

  7. Rong-Hwa S, Shiao-Shek T, Der-Jiang C et al (2010) Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 188(2):462–466

    Article  Google Scholar 

  8. Girotti S, Eremin S, Montoya A et al (2010) Development of a chemiluminescent ELISA and a colloidal gold-based LFIA for TNT detection. Anal Bioanal Chem 396:687–695

    Article  PubMed  CAS  Google Scholar 

  9. Yu CY, Ang GY, Chua AL et al (2011) Dry-reagent gold nanoparticle-based lateral flow biosensor for the simultaneous detection of Vibrio cholerae serogroups O1 and O139. J Microbiol Methods 86(3):277–282

    Article  PubMed  CAS  Google Scholar 

  10. Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14(1):13–22

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka M, Matsuo K, Enomoto M et al (2004) A sol particle homogeneous immunoassay for measuring serum cystatin C. Clin Biochem 37(1):27–35

    Article  PubMed  CAS  Google Scholar 

  12. Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74(7):1624–1628

    Article  PubMed  CAS  Google Scholar 

  13. Thanh NTK, Rees JH, Rosenzweig Z (2002) Laser-based double beam absorption detection for aggregation immunoassays using gold nanoparticles. Anal Bioanal Chem 374(7–8):1174–1178

    Article  PubMed  CAS  Google Scholar 

  14. Zhang CX, Zhang Y, Wang X et al (2003) Hyper-Rayleigh scattering of protein-modified gold nanoparticles. Anal Biochem 320(1):136–140

    Article  PubMed  CAS  Google Scholar 

  15. Otsuka H, Akiyama Y, Nagasaki Y et al (2002) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J Am Chem Soc 123(34):8226–8230

    Article  Google Scholar 

  16. Torrecilla JS, Mena LM, Yanez SP et al (2008) A neural network approach based on gold-nanoparticle enzyme biosensor. J Chemometr 22(1):46–53

    Article  CAS  Google Scholar 

  17. Pingarro JM, Yanez SP, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53(19):5848–5866

    Article  Google Scholar 

  18. Li J, Song S, Liu X et al (2008) Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Adv Mater 20(3):497–500

    Article  CAS  Google Scholar 

  19. Giulio FP, Kingston DGI, Tamarkin L (2006) Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Devel Res 67(1):47–54

    Article  Google Scholar 

  20. Jun HK, Lee TR (2006) Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles. Drug Devel Res 67(1):61–69

    Article  Google Scholar 

  21. Connolly S, Fitzmaurice D (1999) Programmed assembly of gold nanocrystals in aqueous solution. Adv Mater 11(14):1202–1205

    Article  CAS  Google Scholar 

  22. Park SJ, Lazarides AA, Mirkin CA et al (2001) Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew Chem Int Ed Engl 40(15):2909–2912

    Article  PubMed  CAS  Google Scholar 

  23. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 40(22):4128–4158

    Article  CAS  Google Scholar 

  24. Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131(24):8455–8459

    Article  PubMed  CAS  Google Scholar 

  25. Ferrari E, Darios F, Zhang F et al (2010) Binary polypeptide system for permanent and oriented protein immobilization. J Nanobiotechnology 8:9

    Article  PubMed  Google Scholar 

  26. Brust M, Walker M, Bethell D et al (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7(7):801–802

    Article  Google Scholar 

  27. Perrault SD, Chan WC (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J Am Chem Soc 131(47):17042–17043

    Article  PubMed  CAS  Google Scholar 

  28. Martin MN, Basham JI, Chando P et al (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26(10):7410–7417

    Article  PubMed  CAS  Google Scholar 

  29. Zhao W, Lin L, Hsing I (2009) Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-­mediated conjugation. Biconjug Chem 20(6):1218–1222

    Article  CAS  Google Scholar 

  30. Wangoo N, Bhasin KK, Mehta SK et al (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 323(2):247–254

    Article  PubMed  CAS  Google Scholar 

  31. Satyavani K, Gurudeeban S, Ramanathan T et al (2011) Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnol 9:43

    Article  CAS  Google Scholar 

  32. Walter JG, Petersen S, Stahl F et al (2010) Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers. J Nanobiotechnol 8:21

    Article  Google Scholar 

  33. Conde J, de la Fuente JM, Baptista PV (2010) RNA quantification using gold nanoprobes—application to cancer diagnostics. J Nanobiotechnol 8:5

    Article  Google Scholar 

  34. Crumbliss AL, Stonehuerner J, Henkens RW et al (1994) The use of inorganic materials to control or maintain immobilized enzyme activity. New J Chem 18:327–339

    CAS  Google Scholar 

  35. Gole A, Dash C, Ramakrishnan V et al (2001) Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17(5):1674–1679

    Article  CAS  Google Scholar 

  36. Huang F, Huang CC, Chang HT (2003) Exploring the activity and specificity of gold nanoparticle-bound trypsin by capillary electrophoresis with laser-induced fluorescence detection. Langmuir 19(18):7498–7502

    Article  CAS  Google Scholar 

  37. Lv M, Zhu E, Su Y et al (2009) Trypsin-gold nanoparticle conjugates: binding, enzymatic activity, and stability. Prep Biochem Biotechnol 39(4):429–438

    Article  PubMed  CAS  Google Scholar 

  38. Li H, Huang J, Lv J et al (2005) Nanoparticle PCR: Nanogold-assisted PCR with enhanced specificity. Angew Chem Int Ed Engl 44(32):5100–5103

    Article  PubMed  CAS  Google Scholar 

  39. Li M, Lin YC, Wu CC et al (2005) Enhancing the efficiency of a PCR using gold nanoparticles. Nucl Acids Res 33(21):184

    Article  Google Scholar 

  40. Asuri P, Karajanagi SS, Yang H et al (2006) Increasing protein stability through control of the nanoscale environment. Langmuir 22(13):5833–5836

    Article  PubMed  CAS  Google Scholar 

  41. Halling PJ, Ulijn RV, Flitsch SL (2005) Understanding enzyme action on immobilised substrates. Curr Opin Biotechnol 16(4):385–392

    Article  PubMed  CAS  Google Scholar 

  42. Basso A, Braiuca P, Ebert C et al (2006) Properties and applications of supports for enzyme-mediated transformations in solid phase synthesis. J Chem Technol Biotechnol 81(10):1626–1640

    Article  CAS  Google Scholar 

  43. Cortez J, Vorobieva E, Gralheira D et al (2011) Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds. J Nanopart Res 13:1101–1113

    Article  CAS  Google Scholar 

  44. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  PubMed  CAS  Google Scholar 

  45. Hong R, Fischer NO, Verma A et al (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126(3):739–743

    Article  PubMed  CAS  Google Scholar 

  46. Karajanagi SS, Vertegel AA, Kane RS et al (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20(26):11594–11599

    Article  PubMed  CAS  Google Scholar 

  47. Gole A, Dash C, Soman C et al (2001) On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug Chem 12(5):684–690

    Article  PubMed  CAS  Google Scholar 

  48. Keating CD, Kovaleski KM, Natan MJJ (1998) Protein:colloid conjugates for surface-enhanced Raman scattering: stability and control of ­protein orientation. Phys Chem B 102(47):9404–9413

    Article  CAS  Google Scholar 

  49. Dykman LA, Bogatyrev VA, Khlebtsov BN et al (2005) A protein assay based on colloidal gold conjugates with trypsin. Anal Biochem 341(1):16–21

    Article  PubMed  CAS  Google Scholar 

  50. Laera S, Ceccone G, Rossi F et al (2011) Measuring protein structure and stability of protein–nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett 11(10):4480–4484

    Article  PubMed  CAS  Google Scholar 

  51. Aubin-Tam ME, Hamad-Schifferli K (2005) Gold nanoparticle  −  cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21(26):12080–12084

    Article  PubMed  CAS  Google Scholar 

  52. Kolobanova SV, Filippova IY, Lysogorskaya EN (2001) The enzymatic segment condensation of peptides on a solid phase in organic medium. Bioorg Khim 27(5):347–351

    PubMed  CAS  Google Scholar 

  53. Doeze RHP, Maltman BA, Egan CL et al (2004) Profiling primary protease specificity by peptide synthesis on a solid support. Angew Chem Int Ed Engl 43(24):3138–3141

    Article  PubMed  CAS  Google Scholar 

  54. Zamocky M, Koller F (1999) Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72(1):19–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Soloviev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bailes, J., Gazi, S., Ivanova, R., Soloviev, M. (2012). Effect of Gold Nanoparticle Conjugation on the Activity and Stability of Functional Proteins. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics