Skip to main content

Computational Identification of sRNA Targets

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 905))

Abstract

Many small noncoding RNAs (sRNAs) in bacteria act as posttranscriptional regulators by base pairing to their message targets. TargetRNA is a program that predicts the targets of a sRNA by identifying messages with significant potential to base pair with the sRNA. Since base pairing potential alone is insufficient to accurately identify sRNA targets, TargetRNA integrates several additional features of RNA interactions when predicting regulatory targets of a sRNA. In this chapter, we provide a detailed guide on how to use TargetRNA to identify targets of sRNA regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawamoto H, Koide Y, Morita T, Aiba H (2006) Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61:1013–1022

    Article  PubMed  CAS  Google Scholar 

  2. Pfeiffer V, Papenfort K, Lucchini S, Hinton JCD, Vogel J (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16:840–846

    Article  PubMed  CAS  Google Scholar 

  3. Desnoyers G, Morissette A, Prevost K, Masse E (2009) Small RNA-induced differential degradation of the polycistronic mRNA iscRSUA. EMBO J 28:1551–1561

    Article  PubMed  CAS  Google Scholar 

  4. Prevost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Masse E (2007) The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 64:1260–1273

    Article  PubMed  CAS  Google Scholar 

  5. Urban JH, Vogel J (2008) Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6:e64

    Article  PubMed  Google Scholar 

  6. Papenfort K, Vogel J (2009) Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 160:278–287

    Article  PubMed  CAS  Google Scholar 

  7. Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34:2791–2802

    Article  PubMed  CAS  Google Scholar 

  8. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  PubMed  CAS  Google Scholar 

  9. Xia T, SantaLucia J, Burkhard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:14719–14735

    Article  PubMed  CAS  Google Scholar 

  10. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Biol 288:910–940

    Article  Google Scholar 

  11. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  PubMed  CAS  Google Scholar 

  12. Pruitt KD, Tatusova T, Maglott DR (2005) NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomics, transcripts and proteins. Nucleic Acids Res 33:D501–D504

    Article  PubMed  CAS  Google Scholar 

  13. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structure. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  14. Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 35:D26–D31

    Article  PubMed  CAS  Google Scholar 

  15. Urbanowski ML, Stauffer LT, Stauffer GV (2000) The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 37:856–868

    Article  PubMed  CAS  Google Scholar 

  16. Vogel J (2009) A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol 71:1–11

    Article  PubMed  CAS  Google Scholar 

  17. Pulvermacher SC, Stauffer LT, Stauffer GV (2009) Role of the sRNA GcvB in regulation of cycA in Escherichia coli. Microbiology 155:106–114

    Article  PubMed  CAS  Google Scholar 

  18. Peer A, Margalit H (2011) Accessibility and evolutionary conservation mark bacterial small-RNA target-binding regions. J Bacteriol 193:1690–1701

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Tjaden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tjaden, B. (2012). Computational Identification of sRNA Targets. In: Keiler, K. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 905. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-949-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-949-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-948-8

  • Online ISBN: 978-1-61779-949-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics