Skip to main content

Essential Role of Genetics in the Advancement of Biotechnology

  • Protocol
  • First Online:
Microbial Carotenoids From Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 898))

Abstract

Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K et al (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    PubMed  CAS  Google Scholar 

  2. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    PubMed  CAS  Google Scholar 

  3. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    PubMed  CAS  Google Scholar 

  4. Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    PubMed  CAS  Google Scholar 

  5. Santos CSS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    PubMed  CAS  Google Scholar 

  6. Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121

    PubMed  CAS  Google Scholar 

  7. Ness JE, del Cardayre SB, Minshull J, Stemmer WP (2000) Molecular breeding: the natural approach to protein design. Adv Protein Chem 55:261–292

    PubMed  CAS  Google Scholar 

  8. Zhao H, Arnold FH (1997) Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res 25:1307–1308

    PubMed  CAS  Google Scholar 

  9. Patten PA, Howard RJ, Stemmer WP (1997) Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol 8:724–733

    PubMed  CAS  Google Scholar 

  10. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644–646

    PubMed  CAS  Google Scholar 

  11. Hou L (2009) Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol Lett 31:671–677

    PubMed  CAS  Google Scholar 

  12. Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    PubMed  CAS  Google Scholar 

  13. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    PubMed  CAS  Google Scholar 

  14. Liu Q, Zhang J, Wei X-X, Ouyang S-P, Wu Q, Chen G-Q (2008) Microbial production of l-glutamate and l-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl Microbiol Biotechnol 77:1297–1304

    PubMed  CAS  Google Scholar 

  15. Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H (2007) Innovative metabolic pathway design for efficient l-glutamate production by suppreassing CO2 emission. J Biosci Bioeng 103:262–269

    PubMed  CAS  Google Scholar 

  16. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274

    PubMed  CAS  Google Scholar 

  17. Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient l-lysine production. J Ind Microbiol Biotechnol 33:610–615

    PubMed  CAS  Google Scholar 

  18. Hiyashi M, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) Transcriptome analysis reveals global expression changes in an industrial l-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70:546–550

    Google Scholar 

  19. Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of l-lysine synthesis. Appl Microbiol Biotechnol 76:587–595

    PubMed  CAS  Google Scholar 

  20. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76: 615–623

    PubMed  CAS  Google Scholar 

  21. Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689

    PubMed  CAS  Google Scholar 

  22. Komatsubara S, Kisumi M, Chibata I (1979) Transductional construction of a threonine-producing strain of Serratia marcescens. Appl Environ Microbiol 38:1045–1051

    PubMed  CAS  Google Scholar 

  23. Komatsubara S, Kisumi M, Chibata I (1983) Transductional construction of a threonine-hyperproducing strain of Serratia marcescens: lack of feedback controls of three aspartokinases and two homoserine dehydrogenases. Appl Environ Microbiol 45:1445–1452

    PubMed  CAS  Google Scholar 

  24. Sugita T, Komatsubara S (1989) Construction of a threonine-hyperproducing strain of Serratia marcescens by amplifying the phosphoenolpyruvate carboxylase gene. Appl Microbiol Biotechnol 30:290–293

    CAS  Google Scholar 

  25. Debabov VG (2003) The threonine story. Adv Biochem Eng Biotechnol 79:113–136

    PubMed  CAS  Google Scholar 

  26. Ishida M, Kawashima H, Sato K, Hashiguchi K, Ito H, Enei H et al (1994) Factors improving l-threonine production by a three l-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum. Biosci Biotechnol Biochem 58:768–770

    PubMed  CAS  Google Scholar 

  27. Eggeling L, Sahm H (1999) Amino acid production: principles of metabolic engineering. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 153–176

    Google Scholar 

  28. Kruse D, Kraemer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH et al (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59:205–210

    PubMed  CAS  Google Scholar 

  29. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149–157

    PubMed  CAS  Google Scholar 

  30. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout stimulation. Proc Natl Acad Sci USA 104:7797–7802

    PubMed  CAS  Google Scholar 

  31. Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69:2521–2532

    PubMed  CAS  Google Scholar 

  32. Kisumi M, Komatsubara S, Chibata I (1977) Enhancement of isoleucine hydroxamate-mediated growth inhibition and improvement of isoleucine-producing strains of Serratia marcescens. Appl Environ Microbiol 34: 647–653

    PubMed  CAS  Google Scholar 

  33. Guillouet S, Rodal AA, An G-H, Lessard PA, Sinskey AJ (1999) Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production. Appl Environ Microbiol 65:3100–3107

    PubMed  CAS  Google Scholar 

  34. Morbach S, Sahm H, Eggeling L (1996) l-Isoleucine production with Corynebac­terium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62: 4345–4351

    PubMed  CAS  Google Scholar 

  35. Hashiguchi K, Takesada H, Suzuki E, Matsui H (1999) Construction of an l-isoleucine overproducing strain of Escherichia coli K-12. Biosci Biotechnol Biochem 63:672–679

    PubMed  CAS  Google Scholar 

  36. Eggeling L, Morbach S, Sahm H (1977) The fruits of molecular physiology: engineering the l-isoleucine biosynthesis pathway in Corynebacterium glutamicum. J Biotechnol 56:167–182

    Google Scholar 

  37. Colon GE, Nguyen TT, Jetten MSM, Sinskey A, Stephanopoulos G (1995) Production of isoleucine by overexpression of ilvA in Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 43: 482–488

    PubMed  CAS  Google Scholar 

  38. Kase H, Nakayama K (1977) l-Isoleucine production by analog-resistant mutants derived from threonine-producing strain of Corynebacterium glutamicum. Agric Biol Chem 41:109–116

    CAS  Google Scholar 

  39. Morbach S, Sahm H, Eggeling L (1995) Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards l-isoleucine. Appl Environ Microbiol 61:4315–4320

    PubMed  CAS  Google Scholar 

  40. Morbach S, Kelle R, Winkels S, Sahm H, Eggeling L (1996) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards l-isoleucine in Corynebacterium glutamicum. Appl Microbiol Biotechnol 45:612–620

    CAS  Google Scholar 

  41. Sahm H, Eggeling L, Morbach S, Eikmanns B (1999) Construction of l-isoleucine-­overproducing strains of Corynebacterium glutamicum. Naturwissenschaften 86:33–38

    CAS  Google Scholar 

  42. Shiio I, Sasaki A, Nakamori S, Sano K (1973) Production of l-isoleucine by AHV resistant mutants of Brevibacterium flavum. Agric Biol Chem 37:2053–2061

    CAS  Google Scholar 

  43. Ikeda S, Fujita I, Hirose Y (1976) Culture conditions of l-isoleucine fermentation from acetic acid. Agric Biol Chem 40:517–522

    CAS  Google Scholar 

  44. Lee M, Smith GM, Eiteman MA, Altman E (2004) Aerobic production of alanine by Escherichia coli aceF IdhA mutants expressing the Bacillus sphaericus alaD gene. Appl Microbiol Biotechnol 65:56–60

    PubMed  CAS  Google Scholar 

  45. Bloom F, Smith CJ, Jessee J, Veileux B, Deutch AH (1984) The use of genetically engineered strains of Escherichia coli for the overproduction of free amino acids: proline as a model system. In: Downey K, Voellmy RW (eds) Advances in gene technology: molecular genetics of plants and animals. Academic, New York, pp 383–394

    Google Scholar 

  46. Sugiura M, Takagi T, Kisumu M (1995) Proline production by regulatory mutants of Serratia marcescens. Appl Microbiol Biotechnol 21:213–239

    Google Scholar 

  47. Sugiura M, Imai Y, Takagi T, Kisumi M (1985) Improvement of a proline-producing strain of Serratia marcescens by subcloning of a mutant allele of the proline gene. J Biotechnol 3:47–58

    CAS  Google Scholar 

  48. Masuda M, Takamatu S, Nishimura N, Komatsubara S, Tosa T (1993) Improvement of culture conditions for l-proline production by a recombinant strain of Serratia marcescens. Appl Biochem Biotechnol 43:189–197

    PubMed  CAS  Google Scholar 

  49. Tsuchida T, Kubota K, Yoshinaga F (1986) Improvement of l-proline production by sulfaguanidine resistant mutants derived from l-glutamic acid-producing bacteria. Agric Biol Chem 50:2201–2207

    CAS  Google Scholar 

  50. Nakanishi T, Yokote Y, Taketsugu Y (1973) Conversion of l-glutamic acid fermentation to a l-proline fermentation by Corynebacte­rium glutamicum. J Ferment Technol 51:742–749

    CAS  Google Scholar 

  51. Nakanishi T, Hirao T, Azuma T, Sakurai M, Hagino H (1987) Application of l-glutamate to l-proline fermentation by Corynebac­terium acetoacidophilum. J Ferment Technol 65: 139–144

    CAS  Google Scholar 

  52. Shibasaki T, Hashimoto S, Mori H, Ozaki A (2000) Construction of a novel hydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J Biosci Bioeng 90:522–525

    PubMed  CAS  Google Scholar 

  53. Vandamme EJ (2007) Microbial gems: microorganisms without frontiers. SIM News 57:81–90

    Google Scholar 

  54. Kamada N, Yasuhara A, Takano Y, Nakano T (2001) Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 56:710–717

    PubMed  CAS  Google Scholar 

  55. Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 51: 674–679

    Google Scholar 

  56. Perkins JB, Pero J (1993) Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram positive bacteria: biochemistry, physiology and molecular genetics. American Society for Microbiology, Washington, DC, pp 319–334

    Google Scholar 

  57. Perkins JB, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T et al (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22:8–18

    CAS  Google Scholar 

  58. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    PubMed  CAS  Google Scholar 

  59. Karos M, Vilarino C, Bollschweiler C, Revuelta JL (2004) A genome wide transcription analysis of a fungal rivoflavin overproducer. J Biotechnol 113:69–76

    PubMed  CAS  Google Scholar 

  60. Levy-Schil S, Debussche L, Rigault S, Soubrier F, Bacchette F, Lagneaux D et al (1993) Biotin biosyntheric pathway in a recombinant strain of Escherichia coli overexpressing bio genes: evidence for a limiting step upstream from KAPA. Appl Microbiol Biotechnol 38:755–762

    CAS  Google Scholar 

  61. Sakurai N, Imai Y, Masuda M, Komatsubara S, Tosa T (1994) Improvement of a d-biotin-hyperproducing recombinant strain of Serratia marcescens. J Biotechnol 36:63–73

    PubMed  CAS  Google Scholar 

  62. Masuda M, Takahashi K, Sakurai N, Yanagiya K, Komatsubara S, Tosa T (1995) Further improvement of d-biotin production by a recombinant strain of Serratia marcescens. Process Biochem 30:553–562

    CAS  Google Scholar 

  63. Matsui J, Ifuku O, Kanzaki N, Kawamoto T, Nakahama K (2001) Microorganism resistant to threonine analogue and production of biotin. US patent 6284500

    Google Scholar 

  64. Anderson S, Marks CB, Lazarus R, Miller J, Stafford K, Seymour J et al (1985) Production of 2-keto-l-gulonate: an intermediate in l-ascorbate synthesis by a genetically modified Erwinia herbicola. Science 230:144–149

    PubMed  CAS  Google Scholar 

  65. Grindley JF, Payton MA, van de Pol H, Hardy KG (1988) Conversion of glucose to 2-keto-l-gulonate, an intermediate in l-ascorbate synthesis, by a recombinant strain of Erwinia citreus. Appl Environ Microbiol 54: 1770–1775

    PubMed  CAS  Google Scholar 

  66. Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K et al (1997) Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460

    PubMed  CAS  Google Scholar 

  67. DeBaets S, Vandedrinck S, Vandamme EJ (2000) Vitamins and related biofactors, microbial production. In: Lederberg J (ed) Encyclopedia of microbiology, vol 4, 2nd edn. Academic, New York, pp 837–853

    Google Scholar 

  68. Johnson EA, Schroeder WA (1995) Microbial carotenoids. Adv Biochem Eng Biotechnol 53:119–178

    Google Scholar 

  69. López-Nieto MJ, Costa J, Peiro E, Méndez E, Rodríguez-Sáiz M, de la Fuente JL, Cabri W, Barredo JL (2004) Biotechnological lycopene production by mated fermentation of Blakeslea trispora. Appl Microbiol Biotechnol 66:153–159

    PubMed  CAS  Google Scholar 

  70. Ciegler A (1965) Microbial carotenogenesis. Adv Appl Microbiol 7:1–34

    PubMed  CAS  Google Scholar 

  71. Ninet L, Renaut J (1979) Carotenoids. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1, 2nd edn. Academic, New York, pp 529–544

    Google Scholar 

  72. Barkovich R, Liao JC (2001) Metabolic engineering of isoprenoids. Metab Eng 3: 27–39

    PubMed  CAS  Google Scholar 

  73. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    PubMed  CAS  Google Scholar 

  74. Tao L, Jackson RE, Cheng Q (2005) Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metab Eng 7:10–17

    PubMed  CAS  Google Scholar 

  75. Alper H, Miyaoku K, Stephanopoulos G (2006) Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol 72:968–974

    PubMed  CAS  Google Scholar 

  76. Fernández-Sevilla JM, Acien Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    PubMed  CAS  Google Scholar 

  77. Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438

    PubMed  CAS  Google Scholar 

  78. Johnson EA (2003) Phaffia rhodozyma: a colorful odyssey. Int Microbiol 6:169–174

    PubMed  CAS  Google Scholar 

  79. de la Fuente JL, Rodríguez-Sáiz M, Schleissner C, Díez B, Peiro E, Barredo JL (2010) High-titer production of astaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous. J Biotechnol 148:144–146

    PubMed  Google Scholar 

  80. Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658

    PubMed  Google Scholar 

  81. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    PubMed  CAS  Google Scholar 

  82. Sánchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1:283–319

    PubMed  CAS  Google Scholar 

  83. Ward OP, Qin WM, Hanjoon JD, Singh EJYA (2006) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75

    PubMed  CAS  Google Scholar 

  84. Kubicek CP, Roehr M (1986) Citric acid fermentation. Crit Rev Biotechnol 3:331–373

    CAS  Google Scholar 

  85. Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100:825–832

    PubMed  CAS  Google Scholar 

  86. Parekh SR, Cheryan M (1994) High concentrations of acetate with a mutant strain of C. thermoaceticum. Biotechnol Lett 16:139–142

    CAS  Google Scholar 

  87. Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y et al (1989) Cloning of the membrane-bound aldehyde dehydrogenase gene of Acetobacter polyoxogenes and improvement of acetic acid production by use of thecloned gene. Appl Environ Microbiol 55:171–176

    PubMed  CAS  Google Scholar 

  88. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM et al (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    PubMed  CAS  Google Scholar 

  89. John RP, Gangadharan D, Madhavan Nampoothiri K (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquuefaciens through protoplastic fusion for l-latic acid production from starchy wastes. Bioresour Technol 99:8008–8015

    PubMed  CAS  Google Scholar 

  90. Skory CD (2004) Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Appl Microbiol Biotechnol 64:237–242

    PubMed  CAS  Google Scholar 

  91. Saito S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K et al (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl Environ Microbiol 71:2789–2792

    Google Scholar 

  92. Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V et al (1999) Replacement of a metabolic pathway for large scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65:4211–4215

    PubMed  CAS  Google Scholar 

  93. Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2003) Fermentation of 10% (w/v) sugar to D(-)-lactate by engineered Escherichia coli B. Biotechnol Lett 27:1891–1896

    Google Scholar 

  94. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S et al (2006) d-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101: 172–177

    PubMed  CAS  Google Scholar 

  95. Sánchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli. Metab Eng 7:229–239

    PubMed  CAS  Google Scholar 

  96. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948

    PubMed  CAS  Google Scholar 

  97. Lin H, Bennett GN, San KY (2005) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 90:775–779

    PubMed  CAS  Google Scholar 

  98. Vemuri GN, Eiteman MA, Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28: 325–332

    PubMed  CAS  Google Scholar 

  99. Liu X, Yang S-T (2005) Metabolic engineering of Clostridium tyrobutyricum for butyric acid fermentation. Proceedings of the 229th ACS National Meeting, San Diego, Abstract 70

    Google Scholar 

  100. Neufeld RJ, Peleg Y, Rokem JS, Pines O, Goldberg I (1991) l-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol 13:991–996

    CAS  Google Scholar 

  101. Picataggio S, Rohver T, Deander K, Lanning D, Reynolds R, Mielenz J et al (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Nat Biotechnol 10:894–898

    CAS  Google Scholar 

  102. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    PubMed  CAS  Google Scholar 

  103. Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    PubMed  CAS  Google Scholar 

  104. Jeffries TW (2006) Engineering yeast for xylose metabolism. Curr Opin Biotechnol 17:320–326

    PubMed  CAS  Google Scholar 

  105. Bro C, Regenberg B, Forster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8:102–111

    PubMed  CAS  Google Scholar 

  106. Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120

    PubMed  CAS  Google Scholar 

  107. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    PubMed  CAS  Google Scholar 

  108. Doran JB, Ingram LO (1993) Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol Prog 9:533–538

    CAS  Google Scholar 

  109. Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84(86):181–196

    PubMed  Google Scholar 

  110. Papanikolaou S, Ruiz-Sánchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208

    PubMed  CAS  Google Scholar 

  111. Sanford K, Valle F, Ghirnikar R (2004) Pathway engineering through rational design. Tutorial: designing and building cell factories for biobased production. Genet Eng News 24:44–45

    Google Scholar 

  112. Nakamura C, Whited G (2003) Metabolic engineering for the microbial production of 1,3 propanediol. Curr Opin Biotechnol 14:454–459

    PubMed  CAS  Google Scholar 

  113. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    PubMed  CAS  Google Scholar 

  114. Kaup B, Bringer-Meyer S, Sahm H (2005) d-Mannitol formation from d-glucose in a whiole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 69:397–403

    PubMed  CAS  Google Scholar 

  115. Lee J-K, Oh D-K, Song H-Y, Kim I-W (2007) Ca2+ and Cu2+ supplementation increases mannitol production by Candida magnoliae. Biotechnol Lett 29:291–294

    PubMed  CAS  Google Scholar 

  116. Song SH, Vieille C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84:55–62

    PubMed  CAS  Google Scholar 

  117. Chun UH, Rogers PL (1988) The simultaneous production of sorbitol and gluconic acid by Zymomonas mobilis. Appl Microbiol Biotechnol 29:19–24

    CAS  Google Scholar 

  118. Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerbezem M (2007) High-level; production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metyabolic engineering. Appl Environ Microbiol 73:1864–1872

    PubMed  CAS  Google Scholar 

  119. Hermann M, Fayolle F, Marchal R, Podvin L, Sebald M, Vandecasteele J-P (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243

    PubMed  CAS  Google Scholar 

  120. Qureshi N, Maddox IS, Freidl A (1992) Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping and pervaporation. Biotechnol Prog 8:382–390

    CAS  Google Scholar 

  121. Chen C-K, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173

    PubMed  CAS  Google Scholar 

  122. Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315

    PubMed  CAS  Google Scholar 

  123. Whiters ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD (2007) Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl Environ Microbiol 73:6277–6283

    Google Scholar 

  124. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    PubMed  CAS  Google Scholar 

  125. Jeya M, Lee K-M, Tiwari MK, Kim J-S, Gunasekaran P, Kim S-Y, Kim I-W, Lee J-K (2009) Isolation of a novel high erythritol-producing Pseudomonas tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 83:225–231

    PubMed  CAS  Google Scholar 

  126. Zagustina NA, Rodionova NA, Mestechkina NM, Shcherbukhin VD, Bezborodov AM (2001) Xylitol production by a culture of Candida guilliermondii 2581. Appl Biochem Microbiol 37:489–492

    CAS  Google Scholar 

  127. Lederberg J (2000) Pathways of discovery: infectious history. Science 288:287–293

    PubMed  CAS  Google Scholar 

  128. Choi KP, Kim KH, Kim JW (1997) Strain improvement of clavulanic acid producing Streptomyces clavuligerus. Proc 10th Internat Symp Biol Actinomycetes (ISBA), Beijing, Abstr 12, 9

    Google Scholar 

  129. Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8:240–252

    PubMed  CAS  Google Scholar 

  130. Pérez-Redondo RA, Rodríguez-García A, Martín JF, Liras P (1999) Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: evidence for two different genes in formation of the C3 unit. J Bacteriol 181:6922–6928

    PubMed  CAS  Google Scholar 

  131. Paradkar AS, Aiodoo KA, Jensen SE (1998) A pathway-specific transcriptional activator regulates late steps of clavuklanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 27:831–843

    PubMed  CAS  Google Scholar 

  132. Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both β-lactam compounds. J Bacteriol 179:2053–2059

    PubMed  CAS  Google Scholar 

  133. Lein J (1986) The Panlabs penicillin strain improvement program. In: Vanek Z, Hostalek Z (eds) Overproduction of microbial metabolites; strain improvement and process control strategies. Butterworth, Boston, pp 105–139

    Google Scholar 

  134. Kennedy J, Turner G (1996) γ-(l-α-Aminoadipyl)-l-cysteinyl-d-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197

    PubMed  CAS  Google Scholar 

  135. Hamlyn PF, Ball C (1979) Recombination studies with Cephalosporium acremonium. In: Sebek OK, Laskin AI (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington, DC, pp 185–191

    Google Scholar 

  136. Skatrud PL, Fisher DL, Ingolia TD, Queener SW (1987) Improved transformation of Cephalosporium acremonium. In: Alacevic M, Hranueli D, Toman Z (eds) Genetics of industrial microorganisms, part B. Zagreb, Pliva, pp 111–119

    Google Scholar 

  137. Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL et al (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Nat Biotechnol 7:477–485

    CAS  Google Scholar 

  138. Wesseling AC, Lago B (1981) Strain improvement by genetic recombination of cephamycin producers, Nocardia lactamdurans and Streptomyces griseus. Dev Ind Microbiol 22:641–651

    Google Scholar 

  139. Chary VK, de la Fuente JL, Leitao AL, Liras P, Martín JF (2000) Overexpression of the lat gene in Nocardia lactamdurans from strong heterologous promoters results in very high levels of lysine-6-aminotransferase and up to a two-fold increase in cephamycin C production. Appl Microbiol Biotechnol 53:282–288

    PubMed  CAS  Google Scholar 

  140. Bignell DRD, Tahlan K, Colvin KR, Jensen SE, Leskiw BK (2005) Expression of ccaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on bldG. Antimicrob Agents Chemother 49:1529–1541

    PubMed  CAS  Google Scholar 

  141. Cantwell C, Beckmann R, Whiteman P, Queener SW, Abraham EP (1992) Isolation of deacetoxycephalosporin C from fermentation broths of Penicillium chrysogenum transformants: construction of a new fungal biosynthetic pathway. Proc R Soc Lond (Biol) 248:283–289

    CAS  Google Scholar 

  142. Crawford L, Stepan AM, Mcada PC, Rambosek JA, Conder MJ, Vinci VA et al (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Nat Biotechnol 13:58–62

    CAS  Google Scholar 

  143. Velasco J, Adrio JL, Moreno MA, Díez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7ADCA) using recombinant strains of Acremonium chrysogenum. Nat Biotechnol 18:857–861

    PubMed  CAS  Google Scholar 

  144. Luo H, Yu H, Qiang L, Shen Z (2004) Cloning and co-expression of d-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase genes in Escherichia coli. Enzyme Microb Technol 35:514–518

    CAS  Google Scholar 

  145. Coulthurst SJ, Barnard AM, Salmond GP (2005) Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat Rev Microbiol 3:295–306

    PubMed  CAS  Google Scholar 

  146. Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new β-lactam antibiotic. 1. Discovery, taxonomy, isolation and physical properties. J Antibiot 32:1–12

    PubMed  CAS  Google Scholar 

  147. Park SR, Han AR, Ban Y-H, Yoo YJ, Kim EJ et al (2010) Genetic engineering of macrolide biosynthesis: past advances, current state and future prospects. Appl Microbiol Biotechnol 85:1227–1239

    PubMed  CAS  Google Scholar 

  148. Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6:300–312

    PubMed  CAS  Google Scholar 

  149. Solenberg PJ, Cantwell CA, Tietz AJ, McGilvray D, Queener SW, Baltz RH (1996) Transposition mutagenesis in Streptomyces fradiae: identification of a neutral site for the stable insertion of DNA by transposon exchange. Gene 16:67–72

    Google Scholar 

  150. Brautaset T, Sletta H, Nedal A, Borgos SEF, Degnes KF, Bakke I, Volokhan O, Sekurova ON, Treshalin ID, Mirchink EP, Dikiy A, Ellingsen TE, Zotchev SB (2008) Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Streptomyces noursei. Chem Biol 15:1198–1206

    PubMed  CAS  Google Scholar 

  151. Galm U, Shen B (2006) Expression of ­biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. Expet Opin Drug Discov 1:409–437

    CAS  Google Scholar 

  152. Méndez C, Salas JA (2003) On the generation of novel anticancer drugs by recombinant DNA technology: the use of combinatorial biosynthesis to produce novel drugs. Comb Chem High Throughput Screen 6:513–526

    PubMed  CAS  Google Scholar 

  153. Rodríguez E, McDaniel R (2001) Combina­torial biosynthesis of antimicrobials and other natural products. Curr Opin Microbiol 4:526–534

    PubMed  CAS  Google Scholar 

  154. Trefzer A, Blanco G, Remsing L, Kunzel E, Rix U, Lipata F et al (2002) Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes from three different biosynthetic pathways. J Am Chem Soc 124:6056–6062

    PubMed  CAS  Google Scholar 

  155. Gomi S, Ikeda D, Nakamura H, Naganawa H, Yamashita F, Hotta K et al (1984) Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2-52 obtained by interspecies fusion treatment. J Antibiot 37:1491–1494

    PubMed  CAS  Google Scholar 

  156. Traxler P, Schupp T, Wehrli W (1982) 16, 17-dihydrorifamycin S and 16,17-dihydro-17-hydroxyrifamycin S, two novel rifamycins from a recombinant strain C5/42 of Nocardia mediterranei. J Antibiot 35:594–601

    PubMed  CAS  Google Scholar 

  157. Okanishi M, Suzuki N, Furuta T (1996) Variety of hybrid characters among recombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci Biotechnol Biochem 60:1233–1238

    CAS  Google Scholar 

  158. Zhou L, Ahlert J, Xue Y, Thorson JS, Sherman DH, Liu H-W (1999) Engineering a methymycin/pikromycin-calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety. J Am Chem Soc 121:9881–9882

    Google Scholar 

  159. Méndez C, Salas JA (2001) Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol 19:449–456

    PubMed  CAS  Google Scholar 

  160. Decker H, Hutchinson CR (1993) Transcriptional analysis of the Streptomyces glaucescens tetracenomycin biosynthesis gene cluster. J Bacteriol 175:3887–3892

    PubMed  CAS  Google Scholar 

  161. Wohlert S-E, Blanco G, Lombo F, Fernández E, Brana AF, Reich S, Udvarnoki G, Méndez C, Decker H, Frevert J et al (1998) Novel hybrid tetracenomycins through combinatorial biosynthesis using a glycosyltransferase encoded by the elm genes in cosmid 16 F4 which shows a very broad sugar substrate specificity. J Am Chem Soc 120: 10596–10601

    CAS  Google Scholar 

  162. Barriere JC, Berthaud N, Beyer D, Dutka-Malen S, Paris JM, Desnottes JF (1998) Recent developments in streptogramin research. Curr Pharm Des 4:155–180

    PubMed  CAS  Google Scholar 

  163. Xu B, Jin Z, Wang H, Jin Q, Jin X et al (2008) Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl Microbiol Biotechnol 80:261–267

    PubMed  CAS  Google Scholar 

  164. Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9:252–260

    PubMed  Google Scholar 

  165. Jenke-Kodama H, Sandmann A, Müller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039

    PubMed  CAS  Google Scholar 

  166. Zazopoulos E, Hwang K, Staffa A, Liu W, Bachmann BO, Nonaka K et al (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190

    PubMed  CAS  Google Scholar 

  167. Moir DT, Shaw KJ, Hare RS, Vovis GF (1999) Genomics and antimicrobial drug discovery. Antimicrob Agents Chemother 43:439–446

    PubMed  CAS  Google Scholar 

  168. Newman DJ, Shapiro S (2008) Microbial prescreens for anticancer activity. SIM News 58:132–150

    Google Scholar 

  169. Hwang CK, Kim HS, Hong YS, Kim YH, Hong SK, Kim SJ, Lee JJ (1995) Expression of Streptomyces peucetius genes for doxorubicin resistance and aklavinone 11-hydroxylase in Streptomyces galilaeus ATCC 31133 and production of a hybrid aclacinomycin. Antimicrob Agents Chemother 39:1616–1620

    PubMed  CAS  Google Scholar 

  170. Kim HS, Hong YS, Kim YH, Yoo OJ, Lee JJ (1996) New anthracycline metabolites produced by the aklavinone 11-hydroxylase gene in Streptomyces galilaeus ATCC 3113. J Antibiot 49:355–360

    PubMed  CAS  Google Scholar 

  171. Niemi J, Mäntäslä P (1995) Nucleotide sequences and expression of genes from Streptomyces purpurascens that cause the production of new anthracyclines. J Bacteriol 177:2942–2945

    PubMed  CAS  Google Scholar 

  172. Ylihonko K, Hakala J, Kunnari T, Mäntsälä P (1996) Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalater nogalamycin biosynthesis genes. Microbiology 142:1965–1972

    PubMed  CAS  Google Scholar 

  173. Strohl WR, Bartel PL, Li Y, Connors NC, Woodman RH (1991) Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Ind Microbiol 7:163–174

    PubMed  CAS  Google Scholar 

  174. Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, Strohl WR, Beale JM Jr, Floss HG (1990) Biosynthesis of anthraquinones by interspecies cloning of actinorhodin genes in streptomycetes: clarification of actinorhodin gene functions. J Bacteriol 172:4816–4826

    PubMed  CAS  Google Scholar 

  175. Arcamone F, Penco S, Vigevani A, Redaelli S, Franchi G, Di Marco A, Casazza AM, Dasdia T, Formelli F, Necco A, Soranzo C (1975) Synthesis and antitumor properties of new glycosides of daunomycinone and adriamycinone. J Med Chem 18:703–707

    PubMed  CAS  Google Scholar 

  176. Madduri K, Kennedy J, Rivola G, Inventi-Solari A, Filippini S, Zanuso G, Colombo AL, Gewain KM, Occi JL, MacNeil DJ, Hutchinson CR (1998) Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat Biotechnol 16:69–74

    PubMed  CAS  Google Scholar 

  177. Manfredi JJ, Horowitz SB (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther 25:83–125

    PubMed  CAS  Google Scholar 

  178. Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6): S3–S6

    PubMed  Google Scholar 

  179. Dejong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2005) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    Google Scholar 

  180. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10: 201–206

    PubMed  CAS  Google Scholar 

  181. Borzlleri RM, Vite GD (2002) Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drugs Future 27:1149–1163

    Google Scholar 

  182. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976) Crystal and molecular structure of compactin: a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin Trans I (11):1165–1170

    Google Scholar 

  183. Endo A, Kuroda M, Tsujita Y (1976) ML-236B and ML-236 C, new inhibitors of cholesterolgenesis produced by Penicillium citrinun. J Antibiot 29:1346–1348

    PubMed  CAS  Google Scholar 

  184. Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by Monascus species. J Antibiot 32:852–854

    PubMed  CAS  Google Scholar 

  185. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C et al (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961

    PubMed  CAS  Google Scholar 

  186. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    PubMed  CAS  Google Scholar 

  187. Stapley EO (1982) Avermectins, antiparasitic lactones produced by Streptomyces avermitilis isolated from a soil in Japan. In: Umezawa H, Demain AL, Hata R, Hutchinson CR (eds) Trends in antibiotic research. Japan Antibiotic Research Association, Tokyo, pp 154–170

    Google Scholar 

  188. Lee J-Y, Hwang Y-S, Kim S-S, Kim E-S, Choi C-Y (2000) Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. Biosci Bioeng 89:606–608

    CAS  Google Scholar 

  189. Ikeda H, Takada Y, Pang C-H, Tanaka H, Omura S (1993) Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol 175:2077–2082

    PubMed  CAS  Google Scholar 

  190. Stutzman-Engwall K, Conlon S, Fedechko R, McArthur H, Pekrun K, Chen Y, Jenne S, La C, Trinh N, Kim S, Zhang Y-X, Fox R, Gustafsson C, Krebber A (2005) Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab Eng 7:27–37

    PubMed  CAS  Google Scholar 

  191. Zhang X, Chen Z, Li M, Wen Y, Song Y, Li J (2006) Construction of ivermectin producer by domain swaps of avermectin polyketide synthase in Streptomyces avermitilis. Appl Microbiol Biotechnol 72:986–994

    PubMed  CAS  Google Scholar 

  192. McArthur HIA (1998) The novel avermectin, Doramectin—a successful application of mutasynthesis. In: Hutchinson CR, McAlpine J (eds) Developments in industrial microbiology-BMP ′97. Society for Industrial Microbiology, Fairfax, pp 43–48

    Google Scholar 

  193. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY 22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726

    PubMed  CAS  Google Scholar 

  194. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987) FK-506, a novel immunosuppressant isolated from Streptomyces. I. Fermentation, isolation and physico-chemical and biological characteristics. J Antibiot 40:1249–1255

    PubMed  CAS  Google Scholar 

  195. Jung S, Moon S, Lee K, Park Y-J, Yoon S et al (2009) Strain development of Streptomyces sp. for tacrolimus production using sequential adaptation. J Ind Microbiol Biotechnol 36:1467–1471

    PubMed  CAS  Google Scholar 

  196. Chen X, Wei P, Fan L, Yang D, Zhu X, Shen W et al (2009) Generation of high-yield rapamycin-producing strains through protoplast-related techniques. Appl Microbiol Biotechnol 83:507–512

    PubMed  CAS  Google Scholar 

  197. Kuscer E, Coates N, Challis I, Gregory M, Wilkinson B, Sheridan R, Petkovic H (2007) Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189:4756–4763

    PubMed  CAS  Google Scholar 

  198. Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159:655–663

    PubMed  CAS  Google Scholar 

  199. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    PubMed  CAS  Google Scholar 

  200. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    PubMed  CAS  Google Scholar 

  201. Rayder RA (2008) Expression systems for process and product improvement. Bioprocess Int 6:4–9

    Google Scholar 

  202. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100:5022–5027

    PubMed  CAS  Google Scholar 

  203. Yuan L, Kurek I, English J, Keenan R (2005) Laboratory-directed protein evolution. Microbiol Mol Biol Rev 69:373–392

    PubMed  CAS  Google Scholar 

  204. Terpe K (1996) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–223

    Google Scholar 

  205. Swartz J (1996) Escherichia coli recombinant DNA technology. In: Neidhardt FC (ed) Esherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society of Microbiology, Washington, DC, pp 1693–1771

    Google Scholar 

  206. Wong MS, Wu S, Causey TB, Bennett GN, San K-Y (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108

    PubMed  CAS  Google Scholar 

  207. Morrow KJ (2009) Grappling with biologic manufacturing concerns. Genet Eng Biotechnol News 29(5):54–55

    Google Scholar 

  208. Choi JH, Lee SJ, Lee SJ, Lee SY (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69:4737–4742

    PubMed  CAS  Google Scholar 

  209. Barnard GC, Henderson GE, Srinivasan S, Gerngross TU (2004) High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expr Purif 38:264–271

    PubMed  CAS  Google Scholar 

  210. Squires CH, Lucy P (2008) Vendor voice: a new paradigm for bacterial strain engineering. Bioprocess Int 6:22–27

    CAS  Google Scholar 

  211. Sreekrishana K, Nelles L, Potenz R, Cruze J, Mazzaferro P et al (1989) High level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry 28:4117–4125

    Google Scholar 

  212. Werten MWT, van den Bosch TJ, Wind RD, Mooibroek H, De Wolf FA (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15:1087–1096

    PubMed  CAS  Google Scholar 

  213. Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Nat Biotechnol 9:455–460

    CAS  Google Scholar 

  214. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    PubMed  CAS  Google Scholar 

  215. Morrow KJ (2007) Strategic protein production. Genet Eng Biotechnol News 27:50–54

    Google Scholar 

  216. Gellison G, Janowicz ZA, Weydemann U, Melber K, Strasser AWM, Hollenberg CP (1992) High-level expression of foreign genes in Hansenula polymorpha. Biotechnol Adv 10:179–189

    Google Scholar 

  217. Meyer V (2008) Genetic engineering of filamentous fubgi—progress, obstacles and future trends. Biotechnol Adv 26:177–185

    PubMed  CAS  Google Scholar 

  218. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    PubMed  CAS  Google Scholar 

  219. Van Hartinsveldt W, van Zeijl CM, Harteeld GM, Gouka RJ, Suykerbuyk M, Luiten RG et al (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene 127:87–94

    Google Scholar 

  220. Ward PP, Piddlington CS, Cunningham GA, Zhou X, Wyatt RD, Conneely OM (1995) A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Nat Biotechnol 13:498–503

    CAS  Google Scholar 

  221. Christensen T, Woeldike H, Boel E, Mortensen SB, Hjortshoej K, Thim L et al (1988) High level expression of recombinant genes in Aspergillus oryzae. Nat Biotechnol 6:1419–1422

    CAS  Google Scholar 

  222. Headon DR, Wyatt RD (1995) Human lactoferrin from Aspergillus spp. SIM News 45:113–117

    Google Scholar 

  223. Verdoes JC, Punt PJ, Burlingame R, Bartels J, van Dijk R, Slump E, Meens M, Joosten R, Emalfarb M (2007) A dedicated vector for efficient library construction and high throughput screening in the hyphal fungus Chrysosporium lucknowense. Ind Biotechnol 3:48–57

    CAS  Google Scholar 

  224. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    PubMed  CAS  Google Scholar 

  225. Wrotnowski C (1998) Animal cell culture; novel systems for research and production. Genet Eng News 18(3):13–37

    Google Scholar 

  226. Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu W-S (2007) Advancing mammalian cell culture engineering using genome-scale technologies. Trends Biotechnol 25:401–408

    PubMed  CAS  Google Scholar 

  227. Decaria P, Smith A, Whitford W (2009) Many considerations in selecting bioproduction culture media. Bioprocess Int 7:44–51

    Google Scholar 

  228. Scott C, Montgomery SA, Rosin LJ (2007) Genetic engineering leads to microbial, animal cell, and transgenic expression systems. BIO Internat Convention, pp. 27–34

    Google Scholar 

  229. Morrow KJ (2007) Improving protein production processes. Genet Eng Biotechnol News 27:44–47

    Google Scholar 

  230. Ryll T (2008) Antibody production using mammalian cell culture—how high can we push productivity? SIM Annual Meeting Program & Abstract, San Diego, S146, p.101

    Google Scholar 

  231. Meyer HP, Biass J, Jungo C, Klein J, Wenger J, Mommers R (2008) An emerging star for therapeutic and catalytic protein production. Bioprocess Int 6:10–21

    CAS  Google Scholar 

  232. CocoMartin JM, Harmsen MM (2008) A review of therapeutic protein expression by mammalian cells. Bioprocess Int 6:28–33

    CAS  Google Scholar 

  233. Jarvis LM (2008) A technology bet. DSM’s pharma product unit leverages its biotech strength to survive in a tough environment. Chem Eng News 86:30–31

    Google Scholar 

  234. Agathos SN (1991) Production scale insect cell culture. Biotechnol Adv 9:51–68

    PubMed  CAS  Google Scholar 

  235. Luckow VA, Summers MD (1988) Trends in the development of baculovirus expression vectors. Nat Biotechnol 6:47–55

    CAS  Google Scholar 

  236. Miller LK (1988) Baculoviruses as gene expression vectors. Annu Rev Microbiol 42:177–199

    PubMed  CAS  Google Scholar 

  237. Wilkinson BE, Cox M (1998) Baculovirus expression system: the production of proteins for diagnostic, human therapeutic or vaccine use. Genet Eng News 18, 35(Nov)

    Google Scholar 

  238. Maiorella B, Harano D (1988) Large scale insect cell culture for recombinant protein production. Nat Biotechnol 6:1406–1409

    CAS  Google Scholar 

  239. Morrow KJ Jr (2007) Improving protein production processes. Genet Eng News 27(5):50–54

    Google Scholar 

  240. Knight P (1991) Baculovirus vectors for making proteins in insect cells. ASM News 57:567–570

    Google Scholar 

  241. Falch E (1991) Industrial enzymes—developments in production and application. Biotechnol Adv 9:643–658

    PubMed  CAS  Google Scholar 

  242. Cowan D (1996) Industrial enzyme technology. Trends Biotechnol 14:177–178

    CAS  Google Scholar 

  243. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    PubMed  CAS  Google Scholar 

  244. Vaishnav P, Demain AL (2009) Industrial biotechnology overview. In: Schaechter M, Lederberg J (eds) Encyclopedia of microbiology, 3rd edn. Elsevier, Oxford, p 335

    Google Scholar 

  245. Wackett LP (1997) Bacterial biocatalysis: stealing a page from nature’s book. Nat Biotechnol 15:415–416

    PubMed  CAS  Google Scholar 

  246. Palva I (1982) Molecular cloning of α-amylase gene from Bacillus amyloliquefaciens and its expression in Bacillus subtilis. Gene 19: 81–87

    PubMed  CAS  Google Scholar 

  247. O’Neill GP, Kilburn DG, Warren RAJ, Miller RC (1986) Overproduction from a cellulase gene with a high guanosine-plus-cytosine content in Escherichia coli. Appl Environ Microbiol 52:737–743

    PubMed  Google Scholar 

  248. Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K et al (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Nat Biotechnol 1:691–696

    CAS  Google Scholar 

  249. Van Brunt J (1986) Fungi: the perfect hosts? Biotechnology 4:1057–1062

    Google Scholar 

  250. Mondou F, Shareck F, Morosoli R, Kleupfel D (1986) Cloning of the xylanase gene of Streptomyces lividans. Gene 49:323–329

    PubMed  CAS  Google Scholar 

  251. Van den Burg B, Vriend G, Veltman O, Venema G, Eijsink VGH (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA 95:2056–2060

    PubMed  Google Scholar 

  252. Ness JE, Welch M, Giver L, Bueno M, Cherry JR, Borchert TV et al (1999) DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol 17:893–896

    PubMed  CAS  Google Scholar 

  253. Jaeger KE, Reetz MT (2000) Directed evolution of enantioselective enzymes for organic chemistry. Curr Opin Chem Biol 4:68–73

    PubMed  CAS  Google Scholar 

  254. Suenaga H, Mitsokua M, Ura Y, Watanabe T, Furukawa K (2001) Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzenes. J Bacteriol 183: 5441–5444

    PubMed  CAS  Google Scholar 

  255. Song JK, Rhee JS (2001) Enhancement of stability and activity of phospholipase A(1) in organic solvents by directed evolution. Biochim Biophys Acta 1547:370–378

    PubMed  CAS  Google Scholar 

  256. Raillard S, Krebber A, Chen Y, Ness JE, Bermudez E, Trinidad R et al (2001) Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chem Biol 8:891–898

    PubMed  CAS  Google Scholar 

  257. Kurtzman AL, Govindarajan S, Vahle K, Jones JT, Heinrichs V, Patten PA (2001) Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr Opin Biotechnol 12:361–370

    PubMed  CAS  Google Scholar 

  258. Marshall SH (2002) DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines. Biotechnol Adv 20:229–238

    PubMed  CAS  Google Scholar 

  259. Locher CP, Soong NW, Whalen RG, Punnonen J (2004) Development of novel vaccines using DNA shuffling and screening strategies. Curr Opin Mol Ther 6:34–39

    PubMed  CAS  Google Scholar 

  260. Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution: the ‘rational’ basis for ‘irrational’ design. Curr Opin Struct Biol 10:421–427

    PubMed  CAS  Google Scholar 

  261. Crameri A, Whitehorn A, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Demain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Demain, A.L., Adrio, J.L. (2012). Essential Role of Genetics in the Advancement of Biotechnology. In: Barredo, JL. (eds) Microbial Carotenoids From Fungi. Methods in Molecular Biology, vol 898. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-918-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-918-1_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-917-4

  • Online ISBN: 978-1-61779-918-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics