Skip to main content

Protein Electrophoresis in Agarose Gels for Separating High Molecular Weight Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 869))

Abstract

Very large proteins (subunit sizes >200 kDa) are difficult to electrophoretically separate on polyacrylamide gels. A SDS vertical agarose gel system has been developed that has vastly improved resolving power for very large proteins. Proteins with molecular masses between 200 and 4,000 kDa can be clearly separated. Inclusion of a reducing agent in the upper reservoir buffer has been found to be a key technical procedure for obtaining optimum resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  2. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    PubMed  CAS  Google Scholar 

  3. Granzier H, Wang K (1993) Gel electrophoresis of giant proteins: solubilization and ­silver-staining of titin and nebulin from ­single muscle fiber segments. Electrophoresis 14:56–64

    Article  PubMed  CAS  Google Scholar 

  4. Tatsumi R, Hattori A (1995) Detection of giant myofibrillar proteins connectin and nebulin by electrophoresis in 2% polyacrylamide slab gels strengthened with agarose. Anal Biochem 224: 28–31

    Article  PubMed  CAS  Google Scholar 

  5. Cazorla O, Freiburg A, Helmes M et al (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67

    Article  PubMed  CAS  Google Scholar 

  6. Warren CM, Krzesinski PR, Greaser ML (2003) Vertical agarose gel electrophoresis and electroblotting of high-molecular-weight proteins. Electrophoresis 24:1695–1702

    Article  PubMed  CAS  Google Scholar 

  7. Wu JJ, Fujikawa K, McMullen BA et al (2006) Characterization of a core binding site for ADAMTS-13 in the A2 domain of von Willebrand factor. Proc Natl Acad Sci USA 103:18470–18474

    Article  PubMed  CAS  Google Scholar 

  8. Ott HW, Griesmacher A, Schnapka-Koepf M et al (2010) Analysis of von Willebrand factor multimers by simultaneous high- and low-resolution vertical SDS-agarose gel electrophoresis and Cy5-labeled antibody high-sensitivity fluorescence detection. Am J Clin Pathol 133:322–330

    Article  PubMed  CAS  Google Scholar 

  9. Hoffner G, Island ML, Djian P (2005) Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers. J Neurochem 95:125–136

    Article  PubMed  CAS  Google Scholar 

  10. Oh-Ishi M, Maeda T (2007) Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (agarose 2-DE). J Chromatogr B Analyt Technol Biomed Life Sci 849:211–222

    Article  PubMed  CAS  Google Scholar 

  11. Yates LD, Greaser ML (1983) Quantitative determination of myosin and actin in rabbit skeletal muscle. J Mol Biol 168:123–141

    Article  PubMed  CAS  Google Scholar 

  12. Fritz JD, Swartz DR, Greaser ML (1989) Factors affecting polyacrylamide gel electrophoresis and electroblotting of high-molecular-weight myofibrillar proteins. Anal Biochem 180:205–210

    Article  PubMed  CAS  Google Scholar 

  13. Peats S (1984) Quantitation of protein and DNA in silver-stained agarose gels. Anal Biochem 140:178–182

    Article  PubMed  CAS  Google Scholar 

  14. Sechi S, Chait BT (1998) Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal Chem 70:5150–5158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison, and from grants (MLG-NIH HL77196 and Hatch NC1131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion L. Greaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greaser, M.L., Warren, C.M. (2012). Protein Electrophoresis in Agarose Gels for Separating High Molecular Weight Proteins. In: Kurien, B., Scofield, R. (eds) Protein Electrophoresis. Methods in Molecular Biology, vol 869. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-821-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-821-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-820-7

  • Online ISBN: 978-1-61779-821-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics