Skip to main content

Identification, Isolation, Characterization, and Banking of Human Dental Pulp Stem Cells

  • Protocol
  • First Online:
Somatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 879))

Abstract

Dental pulp stem cells (DPSCs) can be found within the “cell rich zone” of the dental pulp. Their embryonic origin, from neural crests, explains their multipotency. Up to now, it has been demonstrated that these cells are capable of producing bone tissue, both in vitro and in vivo, as well as a simil-dentin tissue, in vitro. In addition, it has been reported that these cells differentiate into adipocytes, endotheliocytes, melanocytes, neurons, and glial cells and can be easily cryopreserved and stored for long periods of time and retain their multipotency and bone-producing capacity. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells: several scaffolds have been used to promote 3D tissue formation and studies have demonstrated that DPSCs show good adherence and bone tissue formation on microconcavity surface textures. In addition, adult bone tissue with good vascularization has been obtained in grafts. Interestingly, they seem to possess immunoprivileges as they can be grafted into allogenic tissues and seem to exert anti-inflammatory abilities, like many other mesenchymal stem cells. Their recent use in clinical trials for bone repair enforces the notion that DPSCs can be used successfully in patients.

Therefore, their isolation, selection, differentiation, and banking are of great importance. The isolation technique used in most laboratories is based on the use of flow cytometry with cell sorter termed FACS (fluorescent activated cell sorter). It is now important to obtain new methods/protocols to select and isolate stem cells without staining by fluorescent markers or use of magnetic beads.

These new procedures should be based on biophysical differences among the different cell populations in order to obtain interesting peculiarities for implementation in biomedical/clinical laboratories. It is emphasized that the new methods must address simplicity and short times of preparation and use of samples, complete sterility of cells, the potential disposable, low cost and complete maintenance of the viability, and integrity of the cells with real-time response for subsequent applications in the biomedical/clinical/surgical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker GC, Anastassova-Kristeva M, Broxmeyer HE, Dodge WH, Eisenberg LM, Gehling UM, Guenin LM, Huss R, Moldovan NI, Rao M, Srour EF, Yoder MC (2004) Stem cells: shibboleths of development. Stem Cells Dev 13:579–584

    Article  PubMed  Google Scholar 

  2. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  3. Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13:436–448

    Article  PubMed  CAS  Google Scholar 

  4. García-Gómez I, Elvira G, Zapata AG, Lamana ML, Ramírez M, Castro JG, Arranz MG, Vicente A, Bueren J, García-Olmo D (2010) Mesenchymal stem cells: biological properties and clinical applications. Expert Opin Biol Ther 10:1453–1468

    Article  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  6. Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30:CE8–CE12

    Article  PubMed  CAS  Google Scholar 

  7. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  8. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20:1394–1402

    Article  PubMed  Google Scholar 

  9. Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D, De Rosa A, Carinci F, Laino G (2006) Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 208:319–325

    Article  PubMed  CAS  Google Scholar 

  10. d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    Article  PubMed  Google Scholar 

  11. Graziano A, d’Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4:21–26

    Article  PubMed  Google Scholar 

  12. Sinanan AC, Hunt NP, Lewis MP (2004) Human adult craniofacial muscle-derived cells: neural-cell adhesion-molecule (NCAM; CD56) -expressing cells appear to contain multipotential stem cells. Biotechnol Appl Biochem 40:25–34

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15:13–27

    Article  PubMed  Google Scholar 

  14. Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13:767–773

    Article  PubMed  CAS  Google Scholar 

  15. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  16. Fitzgerald M, Chiego DJ, Heys DR (1990) Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 35:707–715

    Article  PubMed  CAS  Google Scholar 

  17. Battye FL, Light A, Tarlinton DM (2000) Single cell sorting and cloning. J Immunol Methods 243(1–2):25–32

    Article  PubMed  CAS  Google Scholar 

  18. Battye FL, Shortman K (1991) Flow cytometry and cell-separation procedures. Curr Opin Immunol 3:238–241

    Article  PubMed  CAS  Google Scholar 

  19. Tucker HA, Bunnell BA (2011) Characterization of human adipose-derived stem cells using flow cytometry. Methods Mol Biol 702:121–131

    Article  PubMed  CAS  Google Scholar 

  20. Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206:693–701

    Article  PubMed  CAS  Google Scholar 

  21. Battaglia R, Palomba E, Palumbo P, Colangeli L, della Corte V (2004) Development of a micro-balance system for dust and water vapour detection in the Mars atmosphere. Adv Space Res 33:2258–2262

    Article  CAS  Google Scholar 

  22. Muramatsu H, Kajiwara K, Tamiya E, Karube I (1986) Piezoelectric immuno sensor for the detection of Candida albicans microbes. Anal Chim Acta 188:257–261

    Article  Google Scholar 

  23. Muramatsu H, Dicks JM, Tamiya E, Karube I (1987) Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins. Anal Chem 59:2760–2763

    Article  PubMed  CAS  Google Scholar 

  24. Lasky SJ, Buttry DA (1989) Sensors based on biomolecules immobilized on the piezoelectric quartz crystal microbalance. Chem Sens Microinstrum 403:237–251

    Article  CAS  Google Scholar 

  25. Muramatsu H, Tamiya E, Karube I (1989) Determination of microbes and immunoglobulins using a piezoelectric biosensor. J Membr Sci 41:281–290

    Article  CAS  Google Scholar 

  26. Ward MD, Emersole RC (1988) Amplified mass immunosorbent assay with a quartz crystal microbalance. J Am Chem Soc 110:8623

    Article  Google Scholar 

  27. Bovenizer JS, Jacobs MB, O’Sullivan C, Guilbault GG (1998) The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Anal Lett 31:1287–1295

    Article  CAS  Google Scholar 

  28. Babacan S, Pivarnik P, Letcher S, Rand AG (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron 15:615–621

    Article  PubMed  CAS  Google Scholar 

  29. Wong YY, Ng SP, Ng MH, Si SH, Yao SZ, Fung YS (2002) Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens Bioelectron 17:676–684

    Article  PubMed  CAS  Google Scholar 

  30. Morgan H, Taylor DM, D’Silva C (1992) Surface plasmon resonance studies of chemisorbed biotin-streptavidin multilayers. Thin Solid Films 209:122–126

    Article  CAS  Google Scholar 

  31. Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B Biomed Sci Appl 722:11–31

    Article  PubMed  CAS  Google Scholar 

  32. Lu B, Smyth MR, O’Kennedy R (1996) Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 121:29R–32R

    Article  PubMed  CAS  Google Scholar 

  33. Suri CR, Jain PK, Mishra GC (1995) Development of piezoelectric crystal based microgravimetric immunoassay for determination of insulin concentration. J Biotechnol 39:27–34

    Article  PubMed  CAS  Google Scholar 

  34. Vaughan RD, O’Sullivan CK, Guilbault GG (1999) Sulfur based self-assembled monolayers (SAM’s) on piezoelectric crystals for immunosensor development Fresenius. J Anal Chem 364:54–57

    CAS  Google Scholar 

  35. Su XL, Li Y (2004) A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosens Bioelectron 19:563–574

    Article  PubMed  CAS  Google Scholar 

  36. Frey BL, Corn RM (1996) Covalent attachment and derivatization of poly(l-lysine) monolayers on gold surfaces as characterized by polarization-modulation FT-IR spectroscopy. Anal Chem 68:3187–3193

    Article  CAS  Google Scholar 

  37. Nuzzo RG, Fusco FA, Allara DL (1987) Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J Am Chem Soc 109:2358–2368

    Article  CAS  Google Scholar 

  38. Ohtani M, Sunagawa T, Kuwabata S, Yoneyama H (1995) Preparation of a microelectrode array by photo-induced elimination of a self-assembled monolayer of hexadecylthiolate on a gold electrode. J Electroanal Chem 396:97–102

    Article  Google Scholar 

  39. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  40. Wang LJ, Wu CS, Hu ZY, Zhang YF, Li R, Wang P (2008) Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor. J Zhejiang Univ Sci B 9:121–131

    Article  PubMed  CAS  Google Scholar 

  41. Park IS, Kim N (1998) Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosens Bioelectron 13:1091–1097

    Article  PubMed  CAS  Google Scholar 

  42. Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology and clinical utility. Blood 87:1–13

    PubMed  CAS  Google Scholar 

  43. Sutherland DR, Keeney M (2007) Re: selection of stem cells by using antibodies that target different CD34 epitopes yields different patterns of T-cell differentiation. Stem Cells 25:2385–2386

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Papaccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tirino, V., Paino, F., De Rosa, A., Papaccio, G. (2012). Identification, Isolation, Characterization, and Banking of Human Dental Pulp Stem Cells. In: Singh, S. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 879. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-815-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-815-3_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-814-6

  • Online ISBN: 978-1-61779-815-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics