Skip to main content

Fluorescence-Based Biosensors

  • Protocol
  • First Online:
Spectroscopic Methods of Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 875))

Abstract

The field of optical sensors has been a growing research area over the last three decades. A wide range of books and review articles has been published by experts in the field who have highlighted the advantages of optical sensing over other transduction methods. Fluorescence is by far the method most often applied and comes in a variety of schemes. Nowadays, one of the most common approaches in the field of optical biosensors is to combine the high sensitivity of fluorescence detection in combination with the high selectivity provided by ligand-binding proteins.

In this chapter we deal with reviewing our recent results on the implementation of fluorescence-based sensors for monitoring environmentally hazardous gas molecules (e.g. nitric oxide, hydrogen sulfide). Reflectivity-based sensors, fluorescence correlation spectroscopy-based (FCS) systems, and sensors relying on the enhanced fluorescence emission on silver island films (SIFs) coupled to the total internal reflection fluorescence mode (TIRF) for the detection of gliadin and other prolamines considered toxic for celiac patients are also discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Auria S, Lakowicz JR (2001) Enzyme fluorescence as a sensing tool: new perspectives in biotechnology. Curr Opin Biotechnol 12:99–104

    Article  PubMed  Google Scholar 

  2. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    Article  CAS  PubMed  Google Scholar 

  3. Choi MMF (2004) Progress in enzyme-based biosensors using optical transducers. Microchim Acta 148:107–132

    Article  CAS  Google Scholar 

  4. McDonagh C, Burke CS, Maccraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422

    Article  CAS  PubMed  Google Scholar 

  5. Staiano M, Bazzicalupo P, Rossi M, D’Auria S (2005) Glucose biosensors as models for the development of advanced protein-based biosensors. Mol Biosyst 1:354–362

    Article  CAS  PubMed  Google Scholar 

  6. Wolfbeis OS (2000) Fiber-optic chemical sensors and biosensors. Anal Chem 72:81R–89R

    Article  CAS  PubMed  Google Scholar 

  7. Verkman AS, Sellers MC, Chao AC, Leung T, Ketcham R (1989) Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. Anal Biochem 178:355–361

    Article  CAS  PubMed  Google Scholar 

  8. Rudat B, Birtalan E, Thome I, Kolmel DK, Horhoiu VL, Wissert MD, Lemmer U, Eisler HJ, Balaban TS, Brase S (2010) Novel pyridinium dyes that enable investigations of peptoids at the single-molecule level. J Phys Chem B 114:13473–13480

    Article  CAS  PubMed  Google Scholar 

  9. Popov AV, Mawn TM, Kim S, Zheng G, Delikatny EJ (2010) Design and synthesis of phospholipase C and A(2)-activatable near-infrared fluorescent smart probes. Bioconjug Chem 21:1724–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nandhikonda P, Begaye MP, Cao Z, Heagy MD (2010) Frontier molecular orbital analysis of dual fluorescent dyes: predicting two-color emission in N-aryl-1,8-naphthalimides. Org Biomol Chem 8:3195–3201

    Article  CAS  PubMed  Google Scholar 

  11. Ramsden JJ (1997) Optical biosensors. J Mol Recognit 10:109–120

    Article  CAS  PubMed  Google Scholar 

  12. Sorochinskii VV, Kurganov BI (1997) Biosensors for detecting organic compounds. 1. Sensors for amino acids, urea, alcohols, and organic acids (review). Appl Biochem Microbiol 33:515–529

    Google Scholar 

  13. Giuliano KA, Post PL, Hahn KM, Taylor DL (1995) Fluorescent protein biosensors: measurement of molecular dynamics in living cells. Annu Rev Biophys Biomol Struct 24:405–434

    Article  CAS  PubMed  Google Scholar 

  14. Giuliano KA, Taylor DL (1998) Fluorescent-protein biosensors: new tools for drug discovery. Trends Biotechnol 16:135–140

    Article  CAS  PubMed  Google Scholar 

  15. Fan XD, White IM, Shopoua SI, Zhu HY, Suter JD, Sun YZ (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  PubMed  Google Scholar 

  16. Sauer M (2003) Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. Angew Chem Int Ed 42:1790–1793

    Article  CAS  Google Scholar 

  17. Nie S, Zare RN (1997) Optical detection of single molecules. Annu Rev Biophys Biomol Struct 26:567–596

    Article  CAS  PubMed  Google Scholar 

  18. Nie S, Chiu DT, Zare RN (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266:1018–1021

    Article  CAS  PubMed  Google Scholar 

  19. Strianese M, De MF, Pellecchia C, Ruggiero G, D’Auria S (2011) Myoglobin as a new fluorescence probe to sense H(2)S. Protein Pept Lett 18:282–286

    Article  CAS  PubMed  Google Scholar 

  20. Strianese M, Varriale A, Staiano M, Pellecchia C, D’Auria S (2011) Absorption into fluorescence. A method to sense biologically relevant gas molecules. Nanoscale 3:298–302

    Article  CAS  PubMed  Google Scholar 

  21. Staiano M, Scognamiglio V, Mamone G, Rossi M, Parracino A, Rossi M, D’Auria S (2006) Glutamine-binding protein from Escherichia coli specifically binds a wheat gliadin peptide. 2. Resonance energy transfer studies suggest a new sensing approach for an easy detection of wheat gliadin. J Proteome Res 5:2083–2086

    Article  CAS  PubMed  Google Scholar 

  22. De Stefano L, Rossi M, Staiano M, Mamone G, Parracino A, Rotiroti L, Rendina I, Rossi M, D’Auria S (2006) Glutamine-binding protein from Escherichia coli specifically binds a wheat gliadin peptide allowing the design of a new porous silicon-based optical biosensor. J Proteome Res 5:1241–1245

    Article  CAS  PubMed  Google Scholar 

  23. Varriale A, Rossi M, Staiano M, Terpetschnig E, Barbieri B, Rossi M, D’Auria S (2007) Fluorescence correlation spectroscopy assay for gliadin in food. Anal Chem 79:4687–4689

    Article  CAS  PubMed  Google Scholar 

  24. Staiano M, Matveeva EG, Rossi M, Crescenzo R, Gryczynski Z, Gryczynski I, Iozzino L, Akopova I, D’Auria S (2009) Nanostructured silver-based surfaces: new emergent methodologies for an easy detection of analytes. ACS Appl Mater Interfaces 1:2909–2916

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Moore PK (2008) Putative biological roles of hydrogen sulfide in health and disease: a breath of not so fresh air? Trends Pharmacol Sci 29:84–90

    Article  CAS  PubMed  Google Scholar 

  26. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134

    Article  CAS  PubMed  Google Scholar 

  27. Smith RP (1978) Hydrogen sulfide poisoning. Can Med Assoc J 118:775–776

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith RP (2010) A short history of hydrogen sulfide. Am Sci 98:6–9

    Google Scholar 

  29. Choi MM, Hawkins P (2003) Development of an optical hydrogen sulphide sensor. Sens Actuators, B 90:211–215

    Article  CAS  Google Scholar 

  30. Ball JC, Hurley MD, Straccia AM, Gierczak CA (1999) Thermal release of nitric oxide from ambient air and diesel particles. Environ Sci Technol 33:1175–1178

    Article  CAS  Google Scholar 

  31. Dooly G, Fitzpatrick C, Lewis E (2007) Optical sensing of hazardous exhaust emissions using a UV based extrinsic sensor. Energy 33:657–666

    Google Scholar 

  32. Dooly G, Fitzpatrick C, Lewis E (2007) Hazardous exhaust gas monitoring using a deep UV based differential optical absorption spectroscopy (DOAS) system. J Phys Conf Ser 76(012021)

    Google Scholar 

  33. Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:1–12

    Article  CAS  Google Scholar 

  34. Kuznetsova S, Zauner G, Schmauder R, Mayboroda OA, Deelder AM, Aartsma TJ, Canters GW (2006) A Forster-resonance-energy transfer-based method for fluorescence detection of the protein redox state. Anal Biochem 350:52–60

    Article  CAS  PubMed  Google Scholar 

  35. Zauner G, Lonardi E, Bubacco L, Aartsma TJ, Canters GW, Tepper AW (2007) Tryptophan-to-dye fluorescence energy transfer applied to oxygen sensing by using type-3 copper proteins. Chemistry 13:7085–7090

    Article  CAS  PubMed  Google Scholar 

  36. Zauner G, Strianese M, Bubacco L, Aartsma TJ, Tepper AW, Canters GW (2008) Type-3 copper proteins as biocompatible and reusable oxygen sensors. Inorg Chim Acta 361:1116–1121

    Article  CAS  Google Scholar 

  37. Strianese M, Zauner G, Tepper AW, Bubacco L, Breukink E, Aartsma TJ, Canters GW, Tabares LC (2009) A protein-based oxygen biosensor for high-throughput monitoring of cell growth and cell viability. Anal Biochem 385:242–248

    Article  CAS  PubMed  Google Scholar 

  38. Strianese M, De Martino F, Pavone V, Lombardi A, Canters GW, Pellecchia C (2010) A FRET-based biosensor for NO detection. J Inorg Biochem 104:619–624

    Article  CAS  PubMed  Google Scholar 

  39. Kuznetsova S, Zauner G, Aartsma TJ, Engelkamp H, Hatzakis N, Rowan AE, Nolte RJ, Christianen PC, Canters GW (2008) The enzyme mechanism of nitrite reductase studied at single-molecule level. Proc Natl Acad Sci USA 105:3250–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmauder R, Alagaratnam S, Chan C, Schmidt T, Canters GW, Aartsma TJ (2005) Sensitive detection of the redox state of copper proteins using fluorescence. J Biol Inorg Chem 10:683–687

    Article  CAS  PubMed  Google Scholar 

  41. Nicholls P (1961) The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J 81:374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang M-YR, Hoffman BM, Shire SJ, Gurd FRN (1979) Oxygen binding to myoglobins and their cobalt analogues. J Am Chem Soc 101:7394–7397

    Article  CAS  Google Scholar 

  43. Jurgens KD, Papadopoulos S, Peters T, Gros G (2000) Myoglobin: just an oxygen store or also an oxygen transporter? News Physiol Sci 15:269–274

    CAS  PubMed  Google Scholar 

  44. Wilson MT, Reeder BJ (2008) Oxygen-binding haem proteins. Exp Physiol 93:128–132

    Article  CAS  PubMed  Google Scholar 

  45. Chung KE, Lan EH, Davidsson MS, Dunn BS, Selverstone VJ, Zink JI (1995) Measurement of dissolved oxygen in water using glass-encapsulated myoglobin. Anal Chem 67:1505–1509

    Article  CAS  Google Scholar 

  46. Millar SJ, Moss BW, Stevenson MH (2010) Some observations on the absorption spectra of various myoglobin derivatives found in meat. Meat Sci 42:272–288

    Google Scholar 

  47. Yamazaki I, Yokota KN, Shikama K (1964) Preparation of crystalline oxymyoglobin from horse heart. J Biol Chem 239:4151–4153

    CAS  PubMed  Google Scholar 

  48. Maki M, Collin P (1997) Coeliac disease. Lancet 349:1755–1759

    Article  CAS  PubMed  Google Scholar 

  49. Tursi A, Giorgetti G, Brandimarte G, Rubino E, Lombardi D, Gasbarrini G (2001) Prevalence and clinical presentation of subclinical/silent celiac disease in adults: an analysis on a 12-year observation. Hepatogastroenterology 48:462–464

    CAS  PubMed  Google Scholar 

  50. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    Article  CAS  PubMed  Google Scholar 

  51. D’Auria S, Scire A, Varriale A, Scognamiglio V, Staiano M, Ausili A, Marabotti A, Rossi M, Tanfani F (2005) Binding of glutamine to glutamine-binding protein from Escherichia coli induces changes in protein structure and increases protein stability. Proteins 58:80–87

    Article  CAS  PubMed  Google Scholar 

  52. Canham L (1997) Properties of porous silicon. IEE Book, Inspec Publisher, London, UK, 4(1):23–26

    Google Scholar 

  53. Lin VS, Motesharei K, Dancil KP, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843

    Article  CAS  PubMed  Google Scholar 

  54. Dattelbaum JD, Lakowicz JR (2001) Optical determination of glutamine using a genetically engineered protein. Anal Biochem 291:89–95

    Article  CAS  PubMed  Google Scholar 

  55. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  56. Valdes I, Garcia E, Llorente M, Mendez E (2003) Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur J Gastroenterol Hepatol 15:465–474

    Article  CAS  PubMed  Google Scholar 

  57. Das P, Metiu H (1985) Enhancement of molecular fluorescence and photochemistry by small metal particles. J Phys Chem 89:4680–4687

    Article  CAS  Google Scholar 

  58. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum Publisher, New York, USA

    Google Scholar 

  59. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277

    Article  CAS  PubMed  Google Scholar 

  60. Matveeva E, Gryczynski Z, Malicka J, Gryczynski I, Lakowicz JR (2004) Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces. Anal Biochem 334:303–311

    Article  CAS  PubMed  Google Scholar 

  61. Sorell L, Lopez JA, Valdes I, Alfonso P, Camafeita E, Acevedo B, Chirdo F, Gavilondo J, Mendez E (1998) An innovative sandwich ELISA system based on an antibody cocktail for gluten analysis. FEBS Lett 439:46–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabato D’Auria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Strianese, M., Staiano, M., Ruggiero, G., Labella, T., Pellecchia, C., D’Auria, S. (2012). Fluorescence-Based Biosensors. In: Bujalowski, W. (eds) Spectroscopic Methods of Analysis. Methods in Molecular Biology, vol 875. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-806-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-806-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-805-4

  • Online ISBN: 978-1-61779-806-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics