Skip to main content

Chocolate and Withdrawal

  • Chapter
  • First Online:
Chocolate in Health and Nutrition

Part of the book series: Nutrition and Health ((NH,volume 7))

  • 5000 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26:165–9.

    PubMed  Google Scholar 

  2. Ifland JR, Preuss HG, Marcus MT, et al. Refined food addiction: a classic substance use disorder. Med Hypotheses. 2009;72:518–26.

    PubMed  CAS  Google Scholar 

  3. Flegal KM. Epidemiologic aspects of overweight and obesity in the United States. Physiol Behav. 2005;86:599–602.

    PubMed  CAS  Google Scholar 

  4. Wang Y, Beydoun MA. The obesity epidemic in the United States–gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29:6–28.

    PubMed  CAS  Google Scholar 

  5. Weingarten HP, Elston D. The phenomenology of food cravings. Appetite. 1990;15:231–46.

    PubMed  CAS  Google Scholar 

  6. Hill AJ, Heaton-Brown L. The experience of food craving: a prospective investigation in healthy women. J Psychosom Res. 1994;38:801–14.

    PubMed  CAS  Google Scholar 

  7. Macht M, Dettmer D. Everyday mood and emotions after eating a chocolate bar or an apple. Appetite. 2006;46:332–6.

    PubMed  Google Scholar 

  8. Koob GF. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry. 2009;42:S32–41.

    PubMed  Google Scholar 

  9. Roberts AJ, Koob GF. The neurobiology of addiction: an overview. Alcohol Health Res World. 1997;21:101–6.

    PubMed  CAS  Google Scholar 

  10. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32:20–39.

    PubMed  CAS  Google Scholar 

  11. Colantuoni C, Schwenker J, McCarthy J, et al. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport. 2001;12:3549–52.

    PubMed  CAS  Google Scholar 

  12. Colantuoni C, Rada P, McCarthy J, et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res. 2002;10:478–88.

    PubMed  CAS  Google Scholar 

  13. Avena NM, Long KA, Hoebel BG. Sugar-dependent rats show enhanced responding for sugar after abstinence: evidence of a sugar deprivation effect. Physiol Behav. 2005;84:359–62.

    PubMed  CAS  Google Scholar 

  14. Avena NM, Carrillo CA, Needham L, et al. Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol. 2004;34:203–9.

    PubMed  CAS  Google Scholar 

  15. Avena NM, Bocarsly ME, Rada P, et al. After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol Behav. 2008;94:309–15.

    PubMed  CAS  Google Scholar 

  16. Liu Y, von Deneen KM, Kobeissy FH, et al. Food addiction and obesity: evidence from bench to bedside. J Psychoactive Drugs. 2010;42:133–45.

    PubMed  Google Scholar 

  17. Haddock CK, Dill PL. The effects of food on mood and behavior: implications for the addictions model of obesity and eating disorders. In: Poston WSC, Haddock CK, editors. Food as a drug. New York: Haworth Press, Inc.; 2000.

    Google Scholar 

  18. Rozin P, Levine E, Stoess C. Chocolate craving and liking. Appetite. 1991;17:199–212.

    PubMed  CAS  Google Scholar 

  19. Weingarten HP, Elston DA. Survey of cravings in a student sample. Appetite. 1991;17:167–75.

    PubMed  CAS  Google Scholar 

  20. Nasser JA, Bradley LE, Leitzsch JB, et al. Psychoactive effects of tasting chocolate and desire for more chocolate. Physiol Behav. 2011;104:117–21.

    PubMed  CAS  Google Scholar 

  21. Hill AJ, Weaver CFL. Food craving, dietary restraint and mood. Appetite. 1991;17:187–97.

    PubMed  CAS  Google Scholar 

  22. Wurtman RJ, Wurtman JJ. Do carbohydrates affect food intake via neurotransmitter activity? Appetite. 1988;11:S42–7.

    Google Scholar 

  23. Macdiarmid JI, Hetherington MM. Mood modulation by food: an exploration of affect and cravings in ‘chocolate addicts’. Br J Clin Psychol. 1995;34:129–38.

    PubMed  Google Scholar 

  24. Cartwright F, Stritzke WG, Durkin K, et al. Chocolate craving among children: implications for disordered eating patterns. Appetite. 2007;48:87–95.

    PubMed  Google Scholar 

  25. Parker G, Crawford J. Chocolate craving when depressed: a personality marker. Br J Psychiatry. 2007;191:351–2.

    PubMed  Google Scholar 

  26. Painter JE, Wansink B, Hieggelke JB. How visibility and convenience influence candy consumption. Appetite. 2002;38:237–8.

    PubMed  Google Scholar 

  27. Rogers PJ, Smit HJ. Food craving and food “addiction”: a critical review of the evidence from a biopsychosocial perspective. Pharmacol Biochem Behav. 2000;66:3–14.

    PubMed  CAS  Google Scholar 

  28. Tuomisto T, Hetherington MM, Morris MF, et al. Psychological and physiological characteristics of sweet food “addiction.”. Int J Eat Disord. 1999;25:169–75.

    PubMed  CAS  Google Scholar 

  29. Fletcher BC, Pine KJ, Woodbridge Z, et al. How visual images of chocolate affect the craving and guilt of female dieters. Appetite. 2007;48:211–7.

    PubMed  Google Scholar 

  30. Tomelleri MS, Grunewald KK. Menstrual cycle and food cravings in young college women. J Am Diet Assoc. 1987;87:311–5.

    PubMed  CAS  Google Scholar 

  31. Zellner DA, Garriga-Trillo A, Centeno S, et al. Chocolate craving and the menstrual cycle. Appetite. 2004;42:119–21.

    PubMed  Google Scholar 

  32. Osman JL, Sobal J. Chocolate cravings in American and Spanish individuals: biological and cultural influences. Appetite. 2006;47:290–301.

    PubMed  Google Scholar 

  33. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage. 2003;19:1709–15.

    PubMed  Google Scholar 

  34. Stoeckel LE, Weller RE, Cook 3rd EW, et al. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage. 2008;41:636–47.

    PubMed  Google Scholar 

  35. Pelchat ML. Food addiction in humans. J Nutr. 2009;139:620–2.

    PubMed  CAS  Google Scholar 

  36. Corsica JA, Spring BJ. Carbohydrate craving: a double-blind, placebo-controlled test of the self-medication hypothesis. Eat Behav. 2008;9:447–54.

    PubMed  Google Scholar 

  37. Levine AS, Kotz CM, Gosnell BA. Sugars and fats: the neurobiology of preference. J Nutr. 2003;133:831S–4.

    PubMed  CAS  Google Scholar 

  38. Erlanson-Albertsson C. How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol. 2005;97:61–73.

    PubMed  CAS  Google Scholar 

  39. Gambarana C, Masi F, Leggio B, et al. Acquisition of a palatable-food-sustained appetitive behavior in satiated rats is dependent on the dopaminergic response to this food in limbic areas. Neuroscience. 2003;121:179–87.

    PubMed  CAS  Google Scholar 

  40. Avena NM, Rada P, Moise N, et al. Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience. 2006;139:813–20.

    PubMed  CAS  Google Scholar 

  41. Rada P, Avena NM, Hoebel BG. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience. 2005;134:737–44.

    PubMed  CAS  Google Scholar 

  42. Hajnal A, Smith GP, Norgren R. Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol. 2004;286:31–7.

    Google Scholar 

  43. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.

    PubMed  CAS  Google Scholar 

  44. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    PubMed  Google Scholar 

  45. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992.

    PubMed  CAS  Google Scholar 

  46. Abizaid A, Liu ZW, Andrews ZB, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.

    PubMed  CAS  Google Scholar 

  47. Egecioglu E, Jerlhag E, Salomé N, et al. Ghrelin increases intake of rewarding food in rodents. Addict Biol. 2010;15:304–11.

    PubMed  CAS  Google Scholar 

  48. Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol. 2008;13:358–63.

    PubMed  CAS  Google Scholar 

  49. Jerlhag E, Landgren S, Egecioglu E, et al. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice. Alcohol. 2011;45:341–7.

    PubMed  CAS  Google Scholar 

  50. Massolt ET, van Haard PM, Rehfeld JF, et al. Appetite suppression through smelling of dark chocolate correlates with changes in ghrelin in young women. Regul Pept. 2010;161:81–6.

    PubMed  CAS  Google Scholar 

  51. Wang GJ, Volkow ND, Thanos PK, et al. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis. 2004;23:39–53.

    PubMed  Google Scholar 

  52. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7.

    PubMed  CAS  Google Scholar 

  53. Huang X-F, Yu Y, Zavitsanou K, et al. Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity. Mol Brain Res. 2005;135:150–61.

    PubMed  CAS  Google Scholar 

  54. Li Y, South T, Han M, et al. High-fat diet decreases tyrosine hydroxylase mRNA expression irrespective of obesity susceptibility in mice. Brain Res. 2009;1268:181–9.

    PubMed  CAS  Google Scholar 

  55. Teegarden SL, Scott AN, Bale TL. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience. 2009;162:924–32.

    PubMed  CAS  Google Scholar 

  56. Peciña S, Berridge KC. Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci. 2005;25:11777–86.

    PubMed  Google Scholar 

  57. Zhang M, Gosnell BA, Kelley AE. Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J Pharmacol Exp Ther. 1998;285:908–14.

    PubMed  CAS  Google Scholar 

  58. Kelley AE, Bless EP, Swanson CJ. Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J Pharmacol Exp Ther. 1996;278:1499–507.

    PubMed  CAS  Google Scholar 

  59. Kelley AE, Baldo BA, Pratt WE, et al. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86:773–95.

    PubMed  CAS  Google Scholar 

  60. Basso AM, Kelley AE. Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. Behav Neurosci. 1999;113:324–36.

    PubMed  CAS  Google Scholar 

  61. Stratford TR, Kelley AE. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J Neurosci. 1997;17:4434–40.

    PubMed  CAS  Google Scholar 

  62. Maldonado-Irizarry CS, Swanson CJ, Kelley AE. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci. 1995;15:6779–88.

    PubMed  CAS  Google Scholar 

  63. Johnson PI, Parente MA, Stellar JR. NMDA-induced lesions of the nucleus accumbens or the ventral pallidum increase the rewarding efficacy of food to deprived rats. Brain Res. 1996;722:109–17.

    PubMed  CAS  Google Scholar 

  64. Maldonado-Irizarry CS, Kelley AE. Excitotoxic lesions of the core and shell subregions of the nucleus accumbens differentially disrupt body weight regulation and motor activity in rat. Brain Res Bull. 1995;38:551–9.

    PubMed  CAS  Google Scholar 

  65. Hoebel BG, Avena NM, Rada P. Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol. 2007;7:617–27.

    PubMed  CAS  Google Scholar 

  66. Rossetti ZL, Melis F, Carboni S, et al. Marked decrease of extraneuronal dopamine after alcohol withdrawal in rats: reversal by MK-801. Eur J Pharmacol. 1991;200:371–2.

    PubMed  CAS  Google Scholar 

  67. Parsons LH, Smith AD, Justice Jr JB. Basal extracellular dopamine is decreased in the rat nucleus accumbens during abstinence from chronic cocaine. Synapse. 1991;9:60–5.

    PubMed  CAS  Google Scholar 

  68. Crippens D, Robinson TE. Withdrawal from morphine or amphetamine: different effects on dopamine in the ventral-medial striatum studied with microdialysis. Brain Res. 1994;650:56–62.

    PubMed  CAS  Google Scholar 

  69. Paulson PE, Robinson TE. Regional differences in the effects of amphetamine withdrawal on dopamine dynamics in the striatum. Analysis of circadian patterns using automated on-line microdialysis. Neuropsychopharmacology. 1996;14:325–37.

    PubMed  CAS  Google Scholar 

  70. Willuhn I, Wanat MJ, Clark JJ, et al. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci. 2010;3:29–71.

    PubMed  Google Scholar 

  71. Wise RA, Newton P, Leeb K, et al. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology. 1995;120:10–20.

    PubMed  CAS  Google Scholar 

  72. Heinz A, Schmidt K, Baum SS, et al. Influence of dopaminergic transmission on severity of withdrawal syndrome in alcoholism. J Stud Alcohol. 1996;57:471–4.

    PubMed  CAS  Google Scholar 

  73. Parsons LH, Koob GF, Weiss F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Ther. 1995;274:1182.

    PubMed  CAS  Google Scholar 

  74. Parsons LH, Justice JR. Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res. 1993;606:195.

    PubMed  CAS  Google Scholar 

  75. Risinger FO, Bormann NM, Oakes RA. Reduced sensitivity to ethanol reward, but not ethanol aversion, in mice lacking 5-HT1B receptors. Alcohol Clin Exp Res. 1996;20:1401–5.

    PubMed  CAS  Google Scholar 

  76. Panocka I, Massi M. Long-lasting suppression of alcohol preference in rats following serotonin receptor blockade by ritanserin. Brain Res Bull. 1992;28:493–6.

    PubMed  CAS  Google Scholar 

  77. Heinz A, Ragan P, Jones DW, et al. Reduced central serotonin transporters in alcoholism. Am J Psychiatry. 1998;155:1544–9.

    PubMed  CAS  Google Scholar 

  78. Wiren KM, Hashimoto JG, Alele PE, et al. Impact of sex: determination of alcohol neuroadaptation and reinforcement. Alcohol Clin Exp Res. 2006;30:233–42.

    PubMed  CAS  Google Scholar 

  79. Adinoff B. The alcohol withdrawal syndrome: neurobiology of treatment and toxicity. Am J Addict. 1994;3:277–88.

    Google Scholar 

  80. Glue P, Nutt DJ. Overexcitement and disinhibition: dynamic neurotransmitter interactions in alcohol withdrawal. Br J Psychiatry. 1990;157:491–9.

    PubMed  CAS  Google Scholar 

  81. Cagetti E, Liang J, Spigelman I, et al. Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function and decreases behavioral responses to positive modulators of GABAA receptors. Mol Pharmacol. 2003;63:53–64.

    PubMed  CAS  Google Scholar 

  82. Sundstrom-Poromaa I, Smith DH, Gong QH, et al. Hormonally regulated alpha(4)beta(2)delta GABA(A) receptors are a target for alcohol. Nat Neurosci. 2002;5:721–2.

    PubMed  CAS  Google Scholar 

  83. Griffiths PJ, Littleton JM, Ortiz A. Changes in monoamine concentrations in mouse brain associated with ethanol dependence and withdrawal. Br J Pharmacol. 1974;50:489–98.

    PubMed  CAS  Google Scholar 

  84. Hawley RJ, Major LF, Schulman EA, et al. Cerebrospinal fluid 3-methoxy-4-hydroxyphenylglycoland norepinephrine levels in alcohol withdrawal. Arch Gen Psychiatr. 1985;42:1056–62.

    PubMed  CAS  Google Scholar 

  85. Ogata M, Mendelson JH, Mello NK, et al. Adrenal function and alcoholism. Psychosom Med. 1971;33:159.

    PubMed  CAS  Google Scholar 

  86. Borg S, Czarnecka A, Kvande H, et al. Clinical conditions and concentrations of MOPEG in the cerebrospinal fluid and urine of male alcoholic patients during withdrawal. Alcohol Clin Exp Res. 1983;7:411–5.

    PubMed  CAS  Google Scholar 

  87. Valverius P, Högström-Brandt AM, Borg S. Norepinephrine metabolite in CSF correlates with ethanol consumption and heredity in humans. Alcohol Clin Exp Res. 1993;10:499–503.

    CAS  Google Scholar 

  88. Potter JF, Bannan LT, Beevers DG. The effect of a non-selective lipophilic beta-blocker on the blood pressure and noradrenaline, vasopressin, cortisol and renin release during alcohol withdrawal. Clin Exp Hypertens. 1984;69:1147–60.

    Google Scholar 

  89. Nutt D, Glue P, Molyneux S, et al. Alpha-2-adrenoceptor function in alcohol withdrawal: a pilot study of the effects of i.v. clonidine in alcoholics and normals. Alcohol Clin Exp Res. 1988;12:14–8.

    PubMed  CAS  Google Scholar 

  90. Balldin J, Berggren U, Engel J, et al. Alpha-2-adrenoceptor sensitivity in early alcohol withdrawal. Biol Psychiatry. 1992;31:712–9.

    PubMed  CAS  Google Scholar 

  91. Fahlke C, Berggren U, Lundborg C, et al. Psychopathology in alcohol withdrawal: relationship to alpha-2-­adrenoceptor function. Alcohol Alcohol. 1999;34(5):750–9.

    PubMed  CAS  Google Scholar 

  92. Berggren U, Fahlke C, Norrby A, et al. Subsensitive alpha-2-adrenoceptor function in male alcohol-dependent individuals during 6 months of abstinence. Drug Alcohol Depend. 2000;57:255–60.

    PubMed  CAS  Google Scholar 

  93. Glue P, Sellman JD, Nicholls MG, et al. Studies of alpha-2-adrenoceptor function in abstinent alcoholics. Br J Addict. 1989;84:97–102.

    PubMed  CAS  Google Scholar 

  94. Merlo PE, Koob GF, Vale W, et al. Release of corticotropin releasing factor (CRF) from the amygdala of ethanol-dependent rats measured with microdialysis. Alcohol Clin Exp Res. 1994;18:522.

    Google Scholar 

  95. Richter RM, Weiss F. In vivo CRF release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse. 1999;32:254.

    PubMed  CAS  Google Scholar 

  96. de Fonseca FR, Carrera M, Navarro M, et al. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science. 1997;276:2050.

    Google Scholar 

  97. Rassnick S, Heinrichs SC, Britton KT, et al. Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res. 1993;05:25.

    Google Scholar 

  98. Heinrichs SC, Menzaghi F, Schulteis G, et al. Suppression of corticotropin-releasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav Pharmacol. 1995;6:74.

    PubMed  CAS  Google Scholar 

  99. Little HJ, Croft AP, O’Callaghan MJ, et al. Selective increases in regional brain glucocorticoid: a novel effect of chronic alcohol. Neuroscience. 2008;156:1017–27.

    PubMed  CAS  Google Scholar 

  100. Avena NM, Rada P, Hoebel BG. Sugar and fat bingeing have notable differences in addictive-like behavior. J Nutr. 2009;139:623–8.

    PubMed  CAS  Google Scholar 

  101. Galic MA, Persinger MA. Voluminous sucrose consumption in female rats: increased “nippiness” during periods of sucrose removal and possible oestrus periodicity. Psychol Rep. 2002;90:58–60.

    PubMed  CAS  Google Scholar 

  102. Cottone P, Sabino V, Steardo L, et al. Consummatory, anxiety-related and metabolic adaptations in female rats with alternating access to preferred food. Psychoneuroendocrinology. 2009;34:38–49.

    PubMed  CAS  Google Scholar 

  103. da Silva Benetti CS, Silveira PP, Matté C, et al. Effects of a chronic exposure to a highly palatable diet and its withdrawal, in adulthood, on cerebral Na+, K  +  -ATPase and plasma S100B in neonatally handled rats. Int J Dev Neurosci. 2010;28:153–9.

    Google Scholar 

  104. La Mela I, Latagliata EC, Patrono E, et al. Olfactory priming reinstates extinguished chocolate-induced conditioned place preference. Appetite. 2010;54:237–40.

    PubMed  Google Scholar 

  105. Schuman M, Gitlin MJ, Fairbanks L. Sweets, chocolate, and atypical depressive traits. J Nerv Ment Dis. 1987;175:491–5.

    PubMed  CAS  Google Scholar 

  106. Hetherington MM. Food cravings and addiction. Surrey: Leatherhead Publishing; 2001.

    Google Scholar 

  107. Rodríguez S, Fernández MC, Cepeda-Benito A, et al. Subjective and physiological reactivity to chocolate images in high and low chocolate cravers. Biol Psychol. 2005;70:9–18.

    PubMed  Google Scholar 

  108. Drobes DJ, Miller EJ, Hillman CH, et al. Food deprivation and emotional reactions to food cues: implications for eating disorders. Biol Psychol. 2001;57:153–77.

    PubMed  CAS  Google Scholar 

  109. Erskine JA, Georgiou GJ. Effects of thought suppression on eating behaviour in restrained and non-restrained eaters. Appetite. 2010;54:499–503.

    PubMed  Google Scholar 

  110. da Silva Benetti CS, Silveira PP, Portella AK, et al. Could preference for palatable foods in neonatally handled rats alter metabolic patterns in adult life? Pediatr Res. 2007;62:405–11.

    Google Scholar 

  111. Wu ZQ, Chen J, Chi ZQ, Liu JG. Involvement of dopamine system in regulation of Na+, K  +  -ATPase in the striatum upon activation of opioid receptors by morphine. Mol Pharmacol. 2007;71:519–30.

    PubMed  Google Scholar 

  112. Taylor DA, Fleming WW. Unifying perspectives of the mechanisms underlying the development of tolerance and physical dependence to opioids. J Pharmacol Exp Ther. 2001;297:11–8.

    PubMed  CAS  Google Scholar 

  113. Fortuna JL. Sweet preference, sugar addiction and the familial history of alcohol dependence: shared neural pathways and genes. J Psychoactive Drugs. 2010;42:147–51.

    PubMed  Google Scholar 

  114. Bayol SA, Farrington SJ, Stickland NC. A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr. 2007;98:843–51.

    PubMed  CAS  Google Scholar 

  115. Räikkönen K, Pesonen AK, Järvenpää AL, et al. Sweet babies: chocolate consumption during pregnancy and infant temperament at six months. Early Hum Dev. 2004;76:139–45.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla da Silva Benetti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

da Silva Benetti, C., Silveira, P.P. (2013). Chocolate and Withdrawal. In: Watson, R., Preedy, V., Zibadi, S. (eds) Chocolate in Health and Nutrition. Nutrition and Health, vol 7. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-803-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-803-0_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-802-3

  • Online ISBN: 978-1-61779-803-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics