Skip to main content

Soft Tissue Reconstructive Options for the Ulcerated or Gangrenous Diabetic Foot

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 2327 Accesses

Abstract

The complex biomechanics of the foot and ankle allow for a highly efficient and coordinated functional unit capable of nearly 10,000 steps a day. However, changes in sensation, motor function, skeletal stability, blood supply, and immune status render the foot and ankle susceptible to breakdown. Inability to salvage the injured foot traditionally has led to major amputation, carrying with it dramatic morbid sequelae and a lifetime dependence on prosthetic devices. Worldwide, a limb is lost to diabetes nearly every 30 s. Consequently, the relative 5-year mortality rate after limb amputation is greater than 50%, a startling figure when compared to mortality rates of lung cancer (86%), colon cancer (39%), and breast cancer (23%).

Because the foot and ankle is such a complex body part, salvage often demands a multidisciplinary team approach. This team ideally should consist of a vascular surgeon skilled in endovascular and distal bypass techniques, a foot and ankle surgeon skilled in internal and external (Ilizarov) bone stabilization techniques, a soft tissue surgeon familiar with modern wound healing as well as soft tissue reconstructive techniques, an infectious disease specialist to manage antibiotic therapy, and an endocrinologist to help manage the glucose levels. Surgical goals include transforming the chronic wound into an acute healing wound with healthy granulation tissue, neo-epithelialization, and wrinkled skin edges. This may include ensuring a good local blood supply, debriding the wound to a clean base, correcting any biomechanical abnormality, and nurturing the wound until it shows signs of healing. The subsequent reconstruction can then usually be accomplished by simple techniques, 90% of the time and complex flap reconstruction in 10% of cases. This chapter focuses on the critical aspects of limb salvage including evaluation, diagnosis, and treatment with a focus on flap-based reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young M. Putting feet first: diabetic foot care worldwide. Lancet. 2005;366(9498):1687.

    Google Scholar 

  2. Armstrongdavid G, Worbeljames, Robbinsjeffery M. Are diabetes-related wounds and amputations worse than cancer? Int Wound J. 2007;4(4):286–7.

    CAS  Google Scholar 

  3. Young M. Putting feet first: diabetic foot care worldwide. Lancet. 2005;366(9498):1687.

    Google Scholar 

  4. Armstrongdavid G, Wrobeljames, Robbins Jeffery M. Are diabetes-related wounds and amputations worse than cancer? Int Wound J. 2007;4(4):286–7.

    CAS  Google Scholar 

  5. Rodeheaver GT. Wound cleansing, wound irrigation, wound disinfection. In: Krasner D, Kane D, editors. Chronic wound care. 2nd ed. Wayne, PA: Health Management Publication, Inc; 1997. p. 97–108.

    Google Scholar 

  6. Armstrong DG, Lavery LA, Kimbriel HR, Nixon BP, Boulton AJ. Patients with active ulceration may not adhere to a standard pressure off-loading regimen. Diabetes Care. 2003;26(9):2595–7.

    PubMed  Google Scholar 

  7. Rogers LC, Bevilacqua NJ, Armstrong DG, Andros G. Digital planimetry results in more accurate wound measurements: a comparison to standard ruler measurements. J Diabetes Sci Technol. 2010;4(4):799–802.

    PubMed  Google Scholar 

  8. Grayson ML, Gibbons GW, Balogh K, et al. Probing to bone in infected pedal ulcers: a clinical sign of osteomyelitis in diabetic patients. JAMA. 1995;273:721–3.

    PubMed  CAS  Google Scholar 

  9. Attinger CE, Cooper P, Blume P, Bulan EJ. The safest surgical incisions and amputations using the angiosome concept and doppler on arterial-arterial connections of the foot and ankle. Foot Ankle Clin N Am. 2001;6:745–801.

    CAS  Google Scholar 

  10. Wolff H, Hansson C. Larval therapy—an effective method of ulcer debridement. Clin Exp Dermatol. 2003;28:134.

    PubMed  CAS  Google Scholar 

  11. Sherman RA, Sherman J, Gilead L, et al. Maggot therapy in outpatients. Arch Phys Med Rehabil. 2001;81:1226–9.

    Google Scholar 

  12. Rhodes GR, King TA. Delayed skin oxygenation following distal tibial revascularization. Implications for wound healing in late amputations. Am Surg. 1986;52:519–25.

    PubMed  CAS  Google Scholar 

  13. Boulton AJ. What you can’t feel can hurt you. J Am Podiatr Med Assoc. 2010;100(5):349–52.

    PubMed  Google Scholar 

  14. Grant WP, Sullivan R, Sonenshine DE. Electron microscope investigation of the effects of diabetes mellitus on the Achilles tendon. J Foot Ankle Surg. 1997;36:1.

    Google Scholar 

  15. Armstrong DG, Stacpoole-Shea S, Nguyen H. Lengthening of the Achilles tendon in diabetic patients who are at high risk for ulceration of the foot. Adv Ortho Surg. 1999;23:71.

    Google Scholar 

  16. Mueller MJ, Sinacore DR, Hastings MK, et al. Effect of Achilles tendon lengthening on neuropathic plantar ulcers, a randomized clinical trial. J Bone Joint Surg Am. 2003;85a:1436.

    Google Scholar 

  17. Maluf KS, Mueller MJ, Hastings MK, et al. Tendon Achilles lengthening for the treatment neuropathic ulcers causes a temporary reduction in forefoot pressure associated with changes in plantar flexor power rather than ankle motion during gait. J Biomech. 2004;37:897.

    PubMed  CAS  Google Scholar 

  18. Sheehan P. Peripheral arterial disease in people with diabetes: consensus statement recommends screening. Clin Diabetes. 2004;22:179–80.

    Google Scholar 

  19. Yamada T, Ohta T, Ishibashi H, Sugimoto I, Iwata H, Takahashi M, Kawanishi J. Clinical reliability and utility of skin perfusion pressure measurement in ischemic limbs―comparison with other noninvasive diagnostic methods. J Vasc Surg. 2008;47:318–23.

    PubMed  Google Scholar 

  20. Falanga V. Growth factors and chronic wounds: the need to understand the microenvironment. J Dermatol. 1992;19:667.

    PubMed  CAS  Google Scholar 

  21. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17:91.

    PubMed  Google Scholar 

  22. Steed DL, Donohoe D, Webster MW, et al. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. J Am Coll Surg. 1996;183:61–4.

    PubMed  CAS  Google Scholar 

  23. Edgerton MT. The art of surgical technique. Baltimore: Williams and Wilkins; 1988.

    Google Scholar 

  24. Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I, Golinko M, Rosenberg H, Tomic-Canic M. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 2007;13(1–2):30–9.

    PubMed  Google Scholar 

  25. Morykwas MJ, Argenta LC, et al. Vacuum assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg. 1997;38:553–62.

    PubMed  CAS  Google Scholar 

  26. Lipsky BA, Berendt AR, Deery HG, et al. Diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2004;39:885.

    PubMed  Google Scholar 

  27. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38:563–76.

    PubMed  CAS  Google Scholar 

  28. Joseph E, Hamori CA, Bergman S, et al. A prospective randomized trial of vacuum assisted closure versus standard therapy of chronic non-healing wounds. Wounds. 2000;12:60.

    Google Scholar 

  29. Byrd HS, Spicer TE, Cierny III G. Management of open tibial fractures. Plast Reconstr Surg. 1985;76:719.

    PubMed  CAS  Google Scholar 

  30. Krizek TJ, Robson MC. The evolution of quantitative bacteriology in wound management. Am J Surg. 1975;130:579.

    PubMed  CAS  Google Scholar 

  31. Sheehan P, Jones P, Caselli A, et al. Percent change in wound area of diabetic foot ulcers over a 4 week period is a robust indicator of complete healing in a 12 week prospective trial. Diabetes Care. 2003;26:1879.

    PubMed  Google Scholar 

  32. Haimowitz JE, Margolis DJ. Moist wound healing. In: Krasner D, Kane D, editors. Chronic wound care. 2nd ed. Wayne, PA: Health Management Publication, Inc; 1997. p. 49–56.

    Google Scholar 

  33. Steed DL. The Diabetic Study Group: clinical evaluation of recombinant human platelet derived growth factor for treatment of lower extremity diabetic ulcers. J Vasc Surg. 1995;21:71–81.

    PubMed  CAS  Google Scholar 

  34. Bromberg BE, Song IC, Mohn MP. The use of pigskin as a temporary biological dressing. Plast Reconstr Surg. 1965;36:80.

    PubMed  CAS  Google Scholar 

  35. Bondoc CC, Butke JF. Clinical experience with viable frozen human skin and frozen skin bank. Ann Surg. 1971;174:371.

    PubMed  CAS  Google Scholar 

  36. Omar AA, Mavor AI, Jones AM, et al. Treatment of venous leg ulcers with Dermagraft. Eur J Vasc Endovasc Surg. 2004;6:666.

    Google Scholar 

  37. Falanga V, Sabolinski M. A bilayered skin construct (APLIGRAF) accelerates complete closure of hard to heal venous stasis ulcers. Wound Repair Regen. 1999;7:201.

    PubMed  CAS  Google Scholar 

  38. Veves A, Falanga V, Armstrong DG. Graftskin, a human skin equivalent, is effective in the management of non-infected neuropathic diabetic foot ulcers. Diabetes Care. 2001;24:290–5.

    PubMed  CAS  Google Scholar 

  39. Marston WA, Hanft J, Norwood P, et al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized study. Diabetes Care. 2003;26:1701.

    PubMed  Google Scholar 

  40. Hunt TK, Pai MP. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet. 1972;135:561.

    PubMed  CAS  Google Scholar 

  41. Pai MP, Hunt TK. Effect of varying oxygen tension on healing in open wounds. Surg Gynecol Obstet. 1972;135:756–7.

    PubMed  CAS  Google Scholar 

  42. Hohn DC, Mackay RD, Halliday B, et al. The effect of oxygen tension on the microbiocidal function of leukocytes in wounds and in vitro. Surg Forum. 1976;27:18–20.

    PubMed  CAS  Google Scholar 

  43. Bonomo SR, Davidson JD, Tyrone JW, et al. Enhancement of wound healing by hyperbaric oxygen and transforming growth factor beta3 in a new chronic wound model in aged rabbits. Arch Surg. 2000;135:1148.

    PubMed  CAS  Google Scholar 

  44. Attinger CE, Janis JE, Steinberg J. Clinical approach to wounds: debridement and wound bed preparation including the use of dressings and wound-healing adjuvants. Plast Reconstr Surg. 2006;117(7S):72S–109.

    PubMed  CAS  Google Scholar 

  45. Armstrong DG, Lavery LA. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. 2005;366(9498):1704–10.

    PubMed  Google Scholar 

  46. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg. 1995;21(1):71–81.

    PubMed  CAS  Google Scholar 

  47. Brem H, Balledux J, Bloom T. Healing of diabetic foot ulcers and pressure ulcers with human skin equivalent: a new paradigm in wound healing. Arch Surg. 2000;135(6):627–34.

    PubMed  CAS  Google Scholar 

  48. Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF®) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 1999;7(4):201–7.

    PubMed  CAS  Google Scholar 

  49. Gentzkow GD, Iwasaki S, Hershon KS, et al. Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care. 1996;19:350–4.

    PubMed  CAS  Google Scholar 

  50. Faglia E, Favales F, Aldeghi A, Calia P, Quarantiello A, Oriani G, Michael M, Campagnoli P, Morabito A. Adjunctive systemic hyperbaric oxygen therapy in the treatment of diabetic foot ulcer. A randomized study. Diabetes Care. 1996;19:1338–43.

    PubMed  CAS  Google Scholar 

  51. Löndahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care. 2010;33(5):998–1003.

    PubMed  Google Scholar 

  52. Janzing HM, Broos PL. Dermotraction: an effective technique for the closure of fasciotomy wounds: a preliminary report of 15 patients. J Orthop Trauma. 2001;15:438.

    PubMed  CAS  Google Scholar 

  53. Rudolph R, Ballantyne DL. Skin grafts. In: McCarthy JG, editor. Plastic surgery. Philadelphia, PA: WB Saunders, vol 1; 1990. p. 221–274.

    Google Scholar 

  54. Blackburn JH, Boemi L, Hall WW, et al. Negative pressure dressings as a bolster for skin grafts. Ann Plast Surg. 1998;40:453.

    PubMed  Google Scholar 

  55. Scherer LA, Shiver S, Chang M, et al. The vacuum assisted closure device: a method of securing skin grafts and improving skin graft survival. Arch Surg. 2002;137:930.

    PubMed  Google Scholar 

  56. Moiemen NS, Staiano JJ, Ojeh NO, et al. Reconstructive surgery with a dermal regeneration template: clinical and histological study. Plast Reconstr Surg. 2001;108:93.

    PubMed  CAS  Google Scholar 

  57. Frame JD, Still J, Lakhel-LeCoadau A, et al. Use of dermal regeneration template in contracture release procedures: a multicenter evaluation. Plast Reconstr Surg. 2004;113:1330.

    PubMed  Google Scholar 

  58. Iorio ML, Goldstein J, Adams M, Steinberg J, Attinger C. Functional limb salvage in the diabetic patient: the use of a collagen bilayer matrix and risk factors for amputation. Plast Reconstr Surg. 2011;127(1):260–7.

    PubMed  CAS  Google Scholar 

  59. Molnar JA, Defranzo AJ, Hadaegh A, et al. Acceleration of integra incorporation in complex tissue defects with subatmospheric pressure. Plast Reconstr Surg. 2004;113:1339.

    PubMed  Google Scholar 

  60. Banis JC. Glabrous skin graft for plantar defects. Foot Ankle Clin. 2001;6:827.

    PubMed  CAS  Google Scholar 

  61. Paragas LK, Attinger C, Blume PA. Local flaps. Clin Podiatr Med Surg. 2000;17:267.

    PubMed  CAS  Google Scholar 

  62. Hallock GG. Distal lower leg local random fasciocutaneous flaps. Plast Reconstr Surg. 1990;86:304.

    PubMed  CAS  Google Scholar 

  63. Sundell B. Studies in the circulation of pedicle skin flaps. Ann Chir Gynaecol Fenn. 1963;53 Suppl 133:1.

    Google Scholar 

  64. Blume PA, Paragas LK, Sumpio BE, Attinger CE. Single stage surgical treatment for non infected diabetic foot ulcers. Plast Reconstr Surg. 2002;109:601.

    PubMed  Google Scholar 

  65. Hidalgo DA, Shaw WW. Anatomic basis of plantar flap design. Plast Reconstr Surg. 1986;78:627.

    PubMed  CAS  Google Scholar 

  66. Shaw WW, Hidalgo DA. Anatomic basis of plantar flap design: clinical applications. Plast Reconstr Surg. 1986;78:637.

    PubMed  CAS  Google Scholar 

  67. Colen LB, Repogle SL, Mathes SJ. The V-Y plantar flap for reconstruction of the forefoot. Plast Reconstr Surg. 1988;81:220.

    PubMed  CAS  Google Scholar 

  68. Attinger CE, Ducic I, Cooper P, Zelen CM. The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and non diabetic patients. Plast Reconstr Surg. 2002;110:1047.

    PubMed  Google Scholar 

  69. Masqualet AC, Gilbert A. An atlas of flaps in limb reconstruction. Philadelphia: J.B. Lippincott Co; 1995.

    Google Scholar 

  70. Mathes SJ, Nahai F. Reconstructive surgery: principles anatomy & technique. New York: Churchill Livingston Inc; 1997.

    Google Scholar 

  71. Hughes LA, Mahoney JL. Anatomic basis of local muscle flaps in the distal third of the leg. Plast Reconstr Surg. 1993;92:1144.

    PubMed  CAS  Google Scholar 

  72. Tobin GR. Hemisoleus and reversed hemi-soleus flaps. Plast Reconstr Surg. 1987;79:407.

    Google Scholar 

  73. Cormack GC, Lamberty BGH. The arterial anatomy of skin flaps. 2nd ed. London: Churchill Livingston; 1994.

    Google Scholar 

  74. Yoshimura M, Imiura S, Shimamura K, et al. Peroneal flap for reconstruction of the extremity: preliminary report. Plast Reconstr Surg. 1984;74:420.

    Google Scholar 

  75. Dong JS, Peng YP, Zhang YX, Lim BH, Pho RW. Reverse anterior tibial artery flap for reconstruction of foot donor site. Plast Reconstr Surg. 2003 Nov; 112(6):1604–12.

    Google Scholar 

  76. Hasegawa M, Torii S, Katoh H, et al. The distally based sural artery flap. Plast Reconstr Surg. 1994;93:1012.

    PubMed  CAS  Google Scholar 

  77. Baumeister SP, Spierer R, Erdman D, et al. A realistic complication analysis of 70 sural artery flaps in a multimorbid patient group. Plast Reconstr Surg. 2003;112:129.

    PubMed  Google Scholar 

  78. Masqualet AC, Beveridge J, Romana C. The lateral supramalleolar flap. Plast Reconstr Surg. 1988;81:74.

    Google Scholar 

  79. Hallock GG. Distal lower leg local random fasciocutaneous flaps. Plast Reconstr Surg. 1990;86:304.

    PubMed  CAS  Google Scholar 

  80. Ger R. The management of chronic ulcers of the dorsum of the foot by muscle transposition and free skin grafting. Br J Plast Surg. 1976;29:199.

    PubMed  CAS  Google Scholar 

  81. Attinger CE, Ducic I, Cooper P, Zelen CM. The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and non diabetic patients. Plast Reconstr Surg. 2002;110:1047.

    PubMed  Google Scholar 

  82. Attinger CE, Cooper P. Soft tissue reconstruction for calcaneal fractures or osteomyelitis. Foot Ankle Clin N Am. 2001;32:135.

    CAS  Google Scholar 

  83. Leitner DW, Gordon L, Buncke HJ. The extensor digitorum brevis as a muscle island flap. Plast Reconstr Surg. 1985;767:777.

    Google Scholar 

  84. Hartrampf Jr CR, Scheflan M, Bostwick III J. The flexor digitorum brevis muscle island pedicle flap, a new dimension in heel reconstruction. Plast Reconstr Surg. 1980;66:264.

    PubMed  Google Scholar 

  85. Morrison WA, Crabb DM, O’Brien BM, et al. The instep of the foot as a fasciocutaneous island flap and as a free flap for heel defects. Plast Reconstr Surg. 1972;72:56–63.

    Google Scholar 

  86. Harrison DH, Morgan BDG. The instep island flap to resurface plantar defects. Br J Plast Surg. 1981;34:315–8.

    PubMed  CAS  Google Scholar 

  87. Yang D, Yang JF, Morris SF, et al. Medial plantar artery perforator flap for soft tissue reconstruction of the heel. Ann Plast Surg. 2011;67(3):294–8.

    PubMed  CAS  Google Scholar 

  88. Grabb WC, Argenta LC. The lateral calcaneal artery skin flap. Plast Reconstr Surg. 1981;68:723–30.

    PubMed  CAS  Google Scholar 

  89. Yan A, Park S, Icao T, Nakamura N. Reconstruction of a skin defect of the posterior heel by a lateral calcaneal flap. Plast Reconstr Surg. 1985;75:642–6.

    Google Scholar 

  90. McCraw JB, Furlow Jr LT. The dorsalis pedis arterialized flap: a clinical study. Plast Reconstr Surg. 1975;55:177–85.

    PubMed  CAS  Google Scholar 

  91. Emmet AJJ. The filleted toe flap. Br J Plast Surg. 1976;29:19.

    Google Scholar 

  92. Snyder GB, Edgerton MT. The principle of island neurovascular flap in the management of ulcerated anesthetic weight-bearing areas of the lower extremity. Plast Reconstr Surg. 1965;36:518.

    PubMed  CAS  Google Scholar 

  93. Kaplan I. Neurovascular island flap in the treatment of trophic ulceration of the heel. Br J Plast Surg. 1976;29:19.

    Google Scholar 

  94. Manson P, Anthenelli RM, Im MJ, et al. The role of oxygen free radicals in ischemic tissue injury in island skin flaps. Ann Surg. 1983;198:87.

    PubMed  CAS  Google Scholar 

  95. Nassif TM, Vida L, Bovet JL, et al. The parascapular flap: a new cutaneous microsurgical free flap. Plast Reconstr Surg. 1982;69(4):591–600.

    PubMed  CAS  Google Scholar 

  96. Jin YT, Cao HP, Chang TS. Clinical applications of the free scapular fascial flap. Ann Plast Surg. 1989;23:170.

    PubMed  CAS  Google Scholar 

  97. Colen LB, Bessa GE, Potparic Z. Reconstruction of the extremity with dorsothoracic fascia free flap. Plast Reconstr Surg. 1998;101:738.

    PubMed  CAS  Google Scholar 

  98. Katseros J, Schusterman M, Beppu M. The lateral upper arm flap: anatomy and clinical applications. Ann Plast Surg. 1984;12:489.

    Google Scholar 

  99. Suttar DS, McGregor IA. The radial forearm flap in intraoral reconstruction: the experience of 60 consecutive cases. Plast Reconstr Surg. 1986;78:1.

    Google Scholar 

  100. Weinzweig N, Davis BW. Foot and ankle reconstruction using the radial forearm flap: a review of 25 cases. Plast Reconstr Surg. 1998;102:1999.

    PubMed  CAS  Google Scholar 

  101. Kimata Y, Uchiyama K, Ebihara S, Nakatsuka T, Harii K. Anatomic variations and technical problems of the anterolateral thigh flap: a report of 74 cases. Plast Reconstr Surg. 1998;102:1517.

    PubMed  CAS  Google Scholar 

  102. Song YG, Chen GZ, Song YL. The free thigh flap: a new free flap concept based on the septocutaneous artery. Br J Plast Surg. 1984;37:149.

    PubMed  CAS  Google Scholar 

  103. Koshima I, Fukuda S, Yamamoto H, et al. Free anterolateral thigh flaps for reconstruction of head and neck defects. Plast Reconstr Surg. 1993;92:421.

    PubMed  CAS  Google Scholar 

  104. Koshima I, Yamamoto H, Hosoda M, Moriguchi T, Orita Y, Nagayama H. Free combined composite flaps using the lateral circumflex femoral system for repair of massive defects of the head and neck regions: an introduction to the chimeric flap principle. Plast Reconstr Surg. 1993;92:411.

    PubMed  CAS  Google Scholar 

  105. Ao M, Nagase Y, Mae O, Namba Y. Reconstruction of posttraumatic defects of the foot by flow-through anterolateral or anteromedial thigh flaps with preservation of posterior tibial vessels. Ann Plast Surg. 1997;38:598.

    PubMed  CAS  Google Scholar 

  106. Kimura N, Satoh K. Consideration of a thin flap as an entity and clinical applications of the thin anterolateral thigh flap. Plast Reconstr Surg. 1996;97:985.

    PubMed  CAS  Google Scholar 

  107. Kuo YR, Jeng SF, Kuo MH, et al. Free anterolateral thigh flap for extremity reconstruction: clinical experience and functional assessment of donor site. Plast Reconstr Surg. 2001;107:1766.

    PubMed  CAS  Google Scholar 

  108. Scheufler O, Kalbermatten Pierer G, et al. Instep free flap for plantar soft tissue reconstruction: indications and options. Microsurgery. 2007;27(3):174–80.

    PubMed  Google Scholar 

  109. Mathes SJ, Alpert BS, Chang N. Use of the muscle flap in chronic osteomyelitis: experimental and clinical correlation. Plast Reconstr Surg. 1982;69:815.

    PubMed  CAS  Google Scholar 

  110. Mathes SJ, Feng LG, Hunt TK. Coverage of the infected wound. Ann Surg. 1983;198:420.

    PubMed  CAS  Google Scholar 

  111. May JW, Halls MJ, Simon SR. Microvascular muscle flaps with skin graft, reconstruction of extensive defects of the foot clinical gait and analysis study. Plast Reconstr Surg. 1985;75:627.

    PubMed  Google Scholar 

  112. High F. Free microvascular muscle flaps with skin graft, reconstruction of extensive defects of the foot: a clinical gait and analysis study. Plast Reconstr Surg. 1985;75:64 [Discussion].

    Google Scholar 

  113. Heller L, Kronowitz SJ. Lower extremity reconstruction. J Surg Oncol. 2006;94(6):479–89.

    PubMed  Google Scholar 

  114. Potparic Z, Rajacic N. Long-term results of weightbearing foot reconstruction with non-innervated and re-innervated free flaps. Br J Plast Surg. 1997;50:176.

    PubMed  CAS  Google Scholar 

  115. Boyd JB, Taylor GI, Corlett R. The vascular territories of the superior epigastric and deep inferior epigastric systems. Plast Reconstr Surg. 1984;73:1.

    PubMed  CAS  Google Scholar 

  116. Harii K, Ohmori K, Sekiguchi J. The free musculocutaneous flap. Plast Reconstr Surg. 1976;57:294.

    PubMed  CAS  Google Scholar 

  117. Redett RJ, Robertson BC, Chang B, et al. Limb salvage of lower-extremity wounds using free gracilis muscle reconstruction. Plast Reconstr Surg. 2000;106:1507.

    PubMed  CAS  Google Scholar 

  118. Potparić Z, Rajacić N. Long-term results of weight-bearing foot reconstruction with non-innervated and reinnervated free flaps. Br J Plast Surg. 1997;50:176–81.

    PubMed  Google Scholar 

  119. May JW, Halls MJ, Simon SR. Free microvascular muscle flaps with skin graft reconstruction of extensive defects of the foot: a clinical and gait analysis study. Plast Reconstr Surg. 1985;75:627.

    PubMed  Google Scholar 

  120. Stevenson TR, Mathes SJ. Management of foot injuries with free muscle flaps. Plast Reconstr Surg. 1986;78:665.

    PubMed  CAS  Google Scholar 

  121. Hollenbeck ST, Woo S, Komatsu I, et al. Longitudinal outcomes and application of the subunit principle to 165 foot and ankle free tissue transfers. Plast Reconstr Surg. 2010;125(3):924–34.

    PubMed  CAS  Google Scholar 

  122. Mann RA, Poppen NK, O’Konski M. Amputation of the great toe: a clinical and biomechanical study. Clin Orthop Relat Res. 1988;226:192.

    PubMed  Google Scholar 

  123. Armstrong DG, Stacpoole-Shea S, Nguyen H, Harkless LB. Lengthening of the Achilles tendon in diabetic patients who are at high risk for ulceration of the foot. J Bone Joint Surg Am. 1999;81-A:535–8.

    Google Scholar 

  124. Lin SS, Lee TH, Wapner KL. Plantar forefoot ulceration with equinus deformity of the ankle in diabetic patients: the effect of tendo-Achilles lengthening and total contact casting. Orthopedics. 1996;19:465–75.

    PubMed  CAS  Google Scholar 

  125. Chrzan JS, Giurini JM, Hurchik JM. A biomechanical model for the transmetatarsal amputation. J Am Podiatr Med Assoc. 1993;83:82.

    PubMed  CAS  Google Scholar 

  126. Barry DC, Sabacinski KA, Habershaw GM, et al. Tendo Achillis procedures for chronic ulcerations in diabetic patients with transmetatarsal amputations. J Am Podiatr Med Assoc. 1993;83:97.

    Google Scholar 

  127. Bowker JH. Partial foot amputations and disarticulations. Foot Ankle. 1997;2:153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Attinger MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Attinger, C.E., Clemens, M.W. (2012). Soft Tissue Reconstructive Options for the Ulcerated or Gangrenous Diabetic Foot. In: Veves, A., Giurini, J., LoGerfo, F. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-791-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-791-0_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-790-3

  • Online ISBN: 978-1-61779-791-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics